001     809682
005     20210129223034.0
024 7 _ |a 10.1016/j.neuroimage.2016.04.072
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a WOS:000378048700008
|2 WOS
024 7 _ |a altmetric:7351487
|2 altmetric
024 7 _ |a pmid:27179606
|2 pmid
037 _ _ |a FZJ-2016-02616
082 _ _ |a 610
100 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation
260 _ _ |a Orlando, Fla.
|c 2016
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467199822_3585
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Given the increasing number of neuroimaging publications, the automated knowledge extraction on brain-behavior associations by quantitative meta-analyses has become a highly important and rapidly growing field of research. Among several methods to perform coordinate-based neuroimaging meta-analyses, Activation Likelihood Estimation (ALE) has been widely adopted. In this paper, we addressed two pressing questions related to ALE meta-analysis: i) Which thresholding method is most appropriate to perform statistical inference? ii) Which sample size, i.e., number of experiments, is needed to perform robust meta-analyses? We provided quantitative answers to these questions by simulating more than 120,000 meta-analysis datasets using empirical parameters (i.e., number of subjects, number of reported foci, distribution of activation foci) derived from the BrainMap database. This allowed to characterize the behavior of ALE analyses, to derive first power estimates for neuroimaging meta-analyses, and to thus formulate recommendations for future ALE studies. We could show as a first consequence that cluster-level family-wise error (FWE) correction represents the most appropriate method for statistical inference, while voxel-level FWE correction is valid but more conservative. In contrast, uncorrected inference and false-discovery rate correction should be avoided. As a second consequence, researchers should aim to include at least 20 experiments into an ALE meta-analysis to achieve sufficient power for moderate effects. We would like to note, though, that these calculations and recommendations are specific to ALE and may not be extrapolated to other approaches for (neuroimaging) meta-analysis.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|f FP7-ICT-2013-FET-F
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nichols, Thomas E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Laird, Angela R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 3
|u fzj
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 4
|u fzj
700 1 _ |a Fox, Peter T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bzdok, Danilo
|0 P:(DE-Juel1)136848
|b 6
700 1 _ |a Eickhoff, Claudia R.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.neuroimage.2016.04.072
|g p. S1053811916300337
|0 PERI:(DE-600)1471418-8
|p 70-85
|t NeuroImage
|v 137
|y 2016
|x 1053-8119
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.pdf
856 4 _ |y Restricted
|x icon
|u https://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.gif?subformat=icon
856 4 _ |y Restricted
|x icon-1440
|u https://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.jpg?subformat=icon-1440
856 4 _ |y Restricted
|x icon-180
|u https://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.jpg?subformat=icon-180
856 4 _ |y Restricted
|x icon-640
|u https://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.jpg?subformat=icon-640
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:809682
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131631
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21