%0 Journal Article
%A Seifert, T.
%A Jaiswal, S.
%A Martens, U.
%A Hannegan, J.
%A Braun, L.
%A Maldonado, P.
%A Freimuth, Frank
%A Kronenberg, A.
%A Henrizi, J.
%A Radu, I.
%A Beaurepaire, E.
%A Mokrousov, Y.
%A Oppeneer, P. M.
%A Jourdan, M.
%A Jakob, G.
%A Turchinovich, D.
%A Hayden, L. M.
%A Wolf, M.
%A Münzenberg, M.
%A Kläui, M.
%A Kampfrath, T.
%T Efficient metallic spintronic emitters of ultrabroadband terahertz radiation
%J Nature photonics
%V 10
%@ 1749-4893
%C London [u.a.]
%I Nature Publ. Group
%M FZJ-2016-02625
%P 483–488
%D 2016
%X Terahertz electromagnetic radiation is extremely useful for numerous applications, including imaging and spectroscopy. It is thus highly desirable to have an efficient table-top emitter covering the 1–30 THz window that is driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source that relies on three tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photoinduced spin currents, the inverse spin-Hall effect and a broadband Fabry–Pérot resonance. Guided by an analytical model, this spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1–30 THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz field amplitude, flexibility, scalability and cost.
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:000378839600015
%R 10.1038/nphoton.2016.91
%U https://juser.fz-juelich.de/record/809696