TY - JOUR
AU - Seifert, T.
AU - Jaiswal, S.
AU - Martens, U.
AU - Hannegan, J.
AU - Braun, L.
AU - Maldonado, P.
AU - Freimuth, Frank
AU - Kronenberg, A.
AU - Henrizi, J.
AU - Radu, I.
AU - Beaurepaire, E.
AU - Mokrousov, Y.
AU - Oppeneer, P. M.
AU - Jourdan, M.
AU - Jakob, G.
AU - Turchinovich, D.
AU - Hayden, L. M.
AU - Wolf, M.
AU - Münzenberg, M.
AU - Kläui, M.
AU - Kampfrath, T.
TI - Efficient metallic spintronic emitters of ultrabroadband terahertz radiation
JO - Nature photonics
VL - 10
SN - 1749-4893
CY - London [u.a.]
PB - Nature Publ. Group
M1 - FZJ-2016-02625
SP - 483–488
PY - 2016
AB - Terahertz electromagnetic radiation is extremely useful for numerous applications, including imaging and spectroscopy. It is thus highly desirable to have an efficient table-top emitter covering the 1–30 THz window that is driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source that relies on three tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photoinduced spin currents, the inverse spin-Hall effect and a broadband Fabry–Pérot resonance. Guided by an analytical model, this spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1–30 THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz field amplitude, flexibility, scalability and cost.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000378839600015
DO - DOI:10.1038/nphoton.2016.91
UR - https://juser.fz-juelich.de/record/809696
ER -