000809741 001__ 809741
000809741 005__ 20240712100909.0
000809741 0247_ $$2doi$$a10.5194/acp-16-6223-2016
000809741 0247_ $$2ISSN$$a1680-7316
000809741 0247_ $$2ISSN$$a1680-7324
000809741 0247_ $$2Handle$$a2128/12808
000809741 0247_ $$2WOS$$aWOS:000378354100012
000809741 0247_ $$2altmetric$$aaltmetric:8124833
000809741 037__ $$aFZJ-2016-02668
000809741 082__ $$a550
000809741 1001_ $$0P:(DE-Juel1)144192$$aHoppe, Charlotte$$b0$$eCorresponding author
000809741 245__ $$aKinematic and diabatic vertical velocity climatologies from a chemistry climate model
000809741 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000809741 3367_ $$2DRIVER$$aarticle
000809741 3367_ $$2DataCite$$aOutput Types/Journal article
000809741 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520844811_25962
000809741 3367_ $$2BibTeX$$aARTICLE
000809741 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809741 3367_ $$00$$2EndNote$$aJournal Article
000809741 520__ $$aThe representation of vertical velocity in chemistry climate models is a key element for the representation of the large-scale Brewer–Dobson circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10-year simulation are provided for both kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely, upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities and analyze the impact of residual circulation and mixing processes on the age of air. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows a younger mean age of air in the inner tropical upwelling branch and an older mean age in the extratropical tropopause region.
000809741 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000809741 536__ $$0G:(DE-Juel1)jicg11_20090701$$aChemisches Lagrangesches Modell der Stratosphäre (CLaMS) (jicg11_20090701)$$cjicg11_20090701$$fChemisches Lagrangesches Modell der Stratosphäre (CLaMS)$$x1
000809741 588__ $$aDataset connected to CrossRef
000809741 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b1$$ufzj
000809741 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b2$$ufzj
000809741 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b3$$ufzj
000809741 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-6223-2016$$gVol. 16, no. 10, p. 6223 - 6239$$n10$$p6223 - 6239$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000809741 8564_ $$uhttps://juser.fz-juelich.de/record/809741/files/weg.pdf$$yOpenAccess
000809741 8564_ $$uhttps://juser.fz-juelich.de/record/809741/files/weg.gif?subformat=icon$$xicon$$yOpenAccess
000809741 8564_ $$uhttps://juser.fz-juelich.de/record/809741/files/weg.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000809741 8564_ $$uhttps://juser.fz-juelich.de/record/809741/files/weg.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000809741 8564_ $$uhttps://juser.fz-juelich.de/record/809741/files/weg.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000809741 8564_ $$uhttps://juser.fz-juelich.de/record/809741/files/weg.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000809741 8767_ $$92016-01-18$$d2016-01-19$$eAPC$$jZahlung erfolgt$$zACP-2015-764
000809741 909CO $$ooai:juser.fz-juelich.de:809741$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000809741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144192$$aForschungszentrum Jülich$$b0$$kFZJ
000809741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b1$$kFZJ
000809741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b2$$kFZJ
000809741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b3$$kFZJ
000809741 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000809741 9141_ $$y2016
000809741 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000809741 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809741 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000809741 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000809741 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000809741 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809741 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809741 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809741 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000809741 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000809741 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000809741 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809741 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809741 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000809741 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000809741 9801_ $$aAPC
000809741 9801_ $$aFullTexts
000809741 980__ $$ajournal
000809741 980__ $$aVDB
000809741 980__ $$aI:(DE-Juel1)IEK-7-20101013
000809741 980__ $$aI:(DE-82)080012_20140620
000809741 980__ $$aAPC
000809741 980__ $$aUNRESTRICTED
000809741 981__ $$aI:(DE-Juel1)ICE-4-20101013