001     809749
005     20240619091207.0
024 7 _ |a 2128/11672
|2 Handle
037 _ _ |a FZJ-2016-02676
041 _ _ |a English
100 1 _ |a Kireev, Dmitry
|0 P:(DE-Juel1)159559
|b 0
111 2 _ |a Graphene Week 2014
|c Gothenburg
|d 2014-06-23 - 2014-06-27
|w Sweden
245 _ _ |a Large array of GFETs for extracellular communication with neuronal cells
260 _ _ |c 2014
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1467118505_5435
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Graphene has already shown its high ability for biosensing. Solution-gated graphene field effect transistors, which showed very high sensitivity in electrolytes [1], have another biologically important application: recording neuronal activity. Such devices exhibit very high signal-to-noise ratio for extracellular measurements [2]. The aim of this work is to optimize and scale both fabrication procedure and measurement system. When working with biological samples, there is a need in a large number of devices. High density of the devices is also preferable. Therefore we fabricate the devices on 4’’ wafer, resulting in 50 chips, 11*11mm each. Each chip consequently embodies an array of 32 graphene FETs (see fig.1). The active area of the chip is around 2 mm2 while each GFET’s channel differs between 5 and 20 um with altered configurations. Such devices, when used with the already developed multichannel measurements system make possible simultaneous measurement and stimulation of all 32 transistors in a time-scale. This makes possible to measure not just discrete spikes, but even propagation of the action potential through the neuronal network.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
700 1 _ |a Schnitker, Jan
|0 P:(DE-Juel1)140152
|b 1
700 1 _ |a Seyock, Silke
|0 P:(DE-Juel1)161234
|b 2
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 3
700 1 _ |a Wolfrum, Bernhard
|0 P:(DE-Juel1)128745
|b 4
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 5
|e Corresponding author
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/809749/files/Abstract.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/809749/files/Poster.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/809749/files/Abstract.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/809749/files/Abstract.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/809749/files/Abstract.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/809749/files/Abstract.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/809749/files/Abstract.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/809749/files/Poster.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/809749/files/Poster.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/809749/files/Poster.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/809749/files/Poster.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:809749
|p openaire
|p open_access
|p driver
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159559
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128745
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 1
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21