000809761 001__ 809761
000809761 005__ 20220930130100.0
000809761 0247_ $$2doi$$a10.1063/1.4952638
000809761 0247_ $$2ISSN$$a1070-664X
000809761 0247_ $$2ISSN$$a1089-7674
000809761 0247_ $$2Handle$$a2128/11246
000809761 0247_ $$2WOS$$aWOS:000378427900024
000809761 037__ $$aFZJ-2016-02688
000809761 082__ $$a530
000809761 1001_ $$0P:(DE-Juel1)151300$$aSteinbusch, Benedikt$$b0$$eCorresponding author$$ufzj
000809761 245__ $$aThe Kelvin-Helmholtz instability of boundary-layer plasmas in the kinetic regime
000809761 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2016
000809761 3367_ $$2DRIVER$$aarticle
000809761 3367_ $$2DataCite$$aOutput Types/Journal article
000809761 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521100947_16838
000809761 3367_ $$2BibTeX$$aARTICLE
000809761 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809761 3367_ $$00$$2EndNote$$aJournal Article
000809761 520__ $$aThe dynamics of the Kelvin-Helmholtz instability are investigated in the kinetic, high-frequency regime with a novel, two-dimensional, mesh-free tree code. In contrast to earlier studies which focused on specially prepared equilibrium configurations in order to compare with fluid theory, a more naturally occurring plasma-vacuum boundary layer is considered here with relevance to both space plasma and linear plasma devices. Quantitative comparisons of the linear phase are made between the fluid and kinetic models. After establishing the validity of this technique via comparison to linear theory and conventional particle-in-cell simulation for classical benchmark problems, a quantitative analysis of the more complex magnetized plasma-vacuum layer is presented and discussed. It is found that in this scenario, the finite Larmor orbits of the ions result in significant departures from the effective shear velocity and width underlying the instability growth, leading to generally slower development and stronger nonlinear coupling between fast growing short-wavelength modes and longer wavelengths.
000809761 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000809761 536__ $$0G:(DE-Juel1)PEPC-FZJ_010102$$aPEPC - Pretty Efficient Parallel Coulomb Solver (PEPC-FZJ_010102)$$cPEPC-FZJ_010102$$x1
000809761 536__ $$0G:(DE-Juel1)jzam04_20130501$$aKinetic Plasma Simulation with Highly Scalable Particle Codes (jzam04_20130501)$$cjzam04_20130501$$fKinetic Plasma Simulation with Highly Scalable Particle Codes$$x2
000809761 588__ $$aDataset connected to CrossRef
000809761 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b1$$ufzj
000809761 7001_ $$0P:(DE-HGF)0$$aSydora, Richard D.$$b2
000809761 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.4952638$$gVol. 23, no. 5, p. 052119 -$$n5$$p052119$$tPhysics of plasmas$$v23$$x1089-7674$$y2016
000809761 8564_ $$uhttps://juser.fz-juelich.de/record/809761/files/Accepted%20Manuscript.pdf$$yOpenAccess
000809761 8564_ $$uhttps://juser.fz-juelich.de/record/809761/files/Accepted%20Manuscript.gif?subformat=icon$$xicon$$yOpenAccess
000809761 8564_ $$uhttps://juser.fz-juelich.de/record/809761/files/Accepted%20Manuscript.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000809761 8564_ $$uhttps://juser.fz-juelich.de/record/809761/files/Accepted%20Manuscript.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000809761 8564_ $$uhttps://juser.fz-juelich.de/record/809761/files/Accepted%20Manuscript.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000809761 8767_ $$92016-06-06$$d2016-06-06$$ePublication charges$$jZahlung erfolgt$$lKK: Mittermaier$$zRightsLink
000809761 909CO $$ooai:juser.fz-juelich.de:809761$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000809761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151300$$aForschungszentrum Jülich$$b0$$kFZJ
000809761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b1$$kFZJ
000809761 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000809761 9141_ $$y2016
000809761 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809761 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS PLASMAS : 2014
000809761 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809761 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809761 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809761 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000809761 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000809761 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000809761 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809761 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000809761 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809761 920__ $$lyes
000809761 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000809761 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000809761 980__ $$ajournal
000809761 980__ $$aVDB
000809761 980__ $$aI:(DE-Juel1)JSC-20090406
000809761 980__ $$aI:(DE-82)080012_20140620
000809761 980__ $$aAPC
000809761 980__ $$aUNRESTRICTED
000809761 9801_ $$aAPC
000809761 9801_ $$aFullTexts