000809769 001__ 809769
000809769 005__ 20240711085625.0
000809769 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2016.03.033
000809769 0247_ $$2ISSN$$a0955-2219
000809769 0247_ $$2ISSN$$a1873-619X
000809769 0247_ $$2WOS$$aWOS:000376808100009
000809769 037__ $$aFZJ-2016-02696
000809769 082__ $$a660
000809769 1001_ $$0P:(DE-HGF)0$$aOtsuka, Yusuke$$b0$$eCorresponding author
000809769 245__ $$aSynthesis of nitrogen and lanthanum codoped barium titanate with a novel thermal ammonolysis reactor
000809769 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000809769 3367_ $$2DRIVER$$aarticle
000809769 3367_ $$2DataCite$$aOutput Types/Journal article
000809769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1464618266_31314
000809769 3367_ $$2BibTeX$$aARTICLE
000809769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809769 3367_ $$00$$2EndNote$$aJournal Article
000809769 520__ $$aLanthanum doped barium titanate was nitridated by thermal ammonolysis with a newly designed reactor, which performs extended efficiency to supply ammonia with less decomposition at elevated temperatures above 600 °C. The kinetics of nitrogen-uptake was studied systematically at elevated temperatures. Nitrogen-content, thermal stability and crystallographic phase of nitridated lanthanum doped barium titanate were characterized by several techniques. The final nitrogen-content of nitridated lanthanum doped barium titanate was much higher than the content of lanthanum, resulting in the formation of oxygen vacancies compensating the additional negative electrical charge of nitrogen anions occupying regular oxygen sites in the lattice. Through thermal ammonolysis, strongly reducing conditions because of the decomposition of ammonia generating hydrogen gas causes the formation of barium orthotitanate as a secondary phase. Ammonolysis temperature below 800 °C and suppression of thermal decomposition of ammonia gas are essential to realize a nitridated lanthanum doped barium titanate as a single phase.
000809769 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000809769 588__ $$aDataset connected to CrossRef
000809769 7001_ $$0P:(DE-Juel1)130894$$aPithan, Christian$$b1$$ufzj
000809769 7001_ $$0P:(DE-Juel1)129189$$aDornseiffer, Jürgen$$b2$$ufzj
000809769 7001_ $$0P:(DE-HGF)0$$aTakada, Takahiro$$b3
000809769 7001_ $$0P:(DE-HGF)0$$aKonoike, Takehiro$$b4
000809769 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5$$ufzj
000809769 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2016.03.033$$gVol. 36, no. 11, p. 2719 - 2725$$n11$$p2719 - 2725$$tJournal of the European Ceramic Society$$v36$$x0955-2219$$y2016
000809769 8564_ $$uhttps://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.pdf$$yRestricted
000809769 8564_ $$uhttps://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.gif?subformat=icon$$xicon$$yRestricted
000809769 8564_ $$uhttps://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000809769 8564_ $$uhttps://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000809769 8564_ $$uhttps://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000809769 8564_ $$uhttps://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000809769 909CO $$ooai:juser.fz-juelich.de:809769$$pVDB
000809769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000809769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129189$$aForschungszentrum Jülich$$b2$$kFZJ
000809769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000809769 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000809769 9141_ $$y2016
000809769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809769 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000809769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2014
000809769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809769 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809769 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000809769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000809769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809769 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000809769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809769 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000809769 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000809769 980__ $$ajournal
000809769 980__ $$aVDB
000809769 980__ $$aUNRESTRICTED
000809769 980__ $$aI:(DE-Juel1)PGI-7-20110106
000809769 980__ $$aI:(DE-Juel1)IEK-1-20101013
000809769 981__ $$aI:(DE-Juel1)IMD-2-20101013
000809769 981__ $$aI:(DE-Juel1)IEK-1-20101013