001     809769
005     20240711085625.0
024 7 _ |a 10.1016/j.jeurceramsoc.2016.03.033
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a WOS:000376808100009
|2 WOS
037 _ _ |a FZJ-2016-02696
082 _ _ |a 660
100 1 _ |a Otsuka, Yusuke
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Synthesis of nitrogen and lanthanum codoped barium titanate with a novel thermal ammonolysis reactor
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1464618266_31314
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lanthanum doped barium titanate was nitridated by thermal ammonolysis with a newly designed reactor, which performs extended efficiency to supply ammonia with less decomposition at elevated temperatures above 600 °C. The kinetics of nitrogen-uptake was studied systematically at elevated temperatures. Nitrogen-content, thermal stability and crystallographic phase of nitridated lanthanum doped barium titanate were characterized by several techniques. The final nitrogen-content of nitridated lanthanum doped barium titanate was much higher than the content of lanthanum, resulting in the formation of oxygen vacancies compensating the additional negative electrical charge of nitrogen anions occupying regular oxygen sites in the lattice. Through thermal ammonolysis, strongly reducing conditions because of the decomposition of ammonia generating hydrogen gas causes the formation of barium orthotitanate as a secondary phase. Ammonolysis temperature below 800 °C and suppression of thermal decomposition of ammonia gas are essential to realize a nitridated lanthanum doped barium titanate as a single phase.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pithan, Christian
|0 P:(DE-Juel1)130894
|b 1
|u fzj
700 1 _ |a Dornseiffer, Jürgen
|0 P:(DE-Juel1)129189
|b 2
|u fzj
700 1 _ |a Takada, Takahiro
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Konoike, Takehiro
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2016.03.033
|g Vol. 36, no. 11, p. 2719 - 2725
|0 PERI:(DE-600)2013983-4
|n 11
|p 2719 - 2725
|t Journal of the European Ceramic Society
|v 36
|y 2016
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/809769/files/1-s2.0-S0955221916301595-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:809769
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129189
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21