001     809770
005     20210129223113.0
024 7 _ |a 10.1111/jace.14092
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 2128/11253
|2 Handle
024 7 _ |a WOS:000373931900032
|2 WOS
037 _ _ |a FZJ-2016-02697
082 _ _ |a 660
100 1 _ |a Kao, Yu-Ju
|0 0000-0002-0058-0522
|b 0
245 _ _ |a Hydroxyl Defect Effect on Reoxidation of Sc-Doped (Ba,Ca)(Ti,Zr)O 3 Fired in Reducing Atmospheres
260 _ _ |a Oxford [u.a.]
|c 2016
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1464618451_31311
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The behavior of grain and grain-boundary conductivity of acceptor (Sc)-doped (Ba,Ca)(Ti,Zr)O3 ceramics sintered in moist reducing atmosphere and subsequently reoxidized in dry and moist atmosphere was investigated by means of impedance spectroscopy (IS). In moist firing atmosphere, water vapor was found to react with oxygen vacancies, forming positively charged hydroxyl defects inline image on regular oxygen sites in the crystal lattice. Proton hopping is considered to raise the ionic conductivity significantly. Therefore, hydroxyl defects inline image in turn influence the grain conduction. Hydroxyl defects inline image are also considered to be responsible for alternations of the dielectric maximum at the Curie point.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Su, Che-Yi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pithan, Christian
|0 P:(DE-Juel1)130894
|b 2
|u fzj
700 1 _ |a Hennings, Detlev
|0 P:(DE-Juel1)130705
|b 3
|u fzj
700 1 _ |a Huang, Chi-Yuen
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
|u fzj
773 _ _ |a 10.1111/jace.14092
|g Vol. 99, no. 4, p. 1311 - 1317
|0 PERI:(DE-600)2008170-4
|n 4
|p 1311 - 1317
|t Journal of the American Ceramic Society
|v 99
|y 2016
|x 0002-7820
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/809770/files/Kao_et_al-2016-Journal_of_the_American_Ceramic_Society.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/809770/files/Kao_et_al-2016-Journal_of_the_American_Ceramic_Society.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/809770/files/Kao_et_al-2016-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/809770/files/Kao_et_al-2016-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/809770/files/Kao_et_al-2016-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/809770/files/Kao_et_al-2016-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:809770
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21