
Restorative Self-Image of Rough-Line

Grids: Application to Coherent

EUV Talbot Lithography
Volume 8, Number 3, June 2016

Hyun-su Kim
Wei Li
Mario C. Marconi
William S. Brocklesby
Larissa Juschkin

DOI: 10.1109/JPHOT.2016.2553847

1943-0655 Ó 2016 IEEE



Restorative Self-Image of Rough-Line
Grids: Application to Coherent

EUV Talbot Lithography

Hyun-su Kim,1,3,4 Wei Li,2 Mario C. Marconi,2

William S. Brocklesby,3 and Larissa Juschkin1,4

1Chair for the Experimental Physics of EUV, RWTH Aachen University and Jülich Aachen Research
Alliance, Fundamentals for Future Information Technology (JARA-FIT), 52074 Aachen, Germany

2Engineering Research Center for Extreme Ultraviolet Science and Technology and the Department
of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523 USA
3Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.

4Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich GmbH, Jülich Aachen Research Alliance,
Fundamentals for Future Information Technology (JARA-FIT), 52425 Jülich, Germany

DOI: 10.1109/JPHOT.2016.2553847
1943-0655 Ó 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Manuscript received March 26, 2016; accepted April 11, 2016. Date of publication April 13, 2016;
date of current version April 28, 2016. The work of H. Kim was supported in part by the EU FP7
Erasmus Mundus Joint Doctorate Programme EXTATIC under framework partnership agreement
FPA-2012-0033 and in part by the COST Action MP1203. The work of L. Juschkin was supported by
the Helmholtz Association for a Helmholtz Professorship as a part of the Initiative and Networking
Fund. The work of W. Li and M. Marconi was supported by the National Science Foundation through
Award ECCS 1507907. Corresponding author: H. Kim (e-mail: lighttn@gmail.com).

Abstract: Self-imaging is a well-known optical phenomenon produced by diffraction of a
coherent beam in a periodic structure. The self-imaging effect (or Talbot effect) repli-
cates the field intensity at a periodic mask in certain planes, effectively producing in
those planes an image of the mask. However, the effect has not been analyzed for a
rough-line grid from the point of view of the fidelity of the image. In this paper, we inves-
tigate the restorative effect of the self-image applied to the lithography of gratings with
rough lines. This paper is applied to characterize a Talbot lithography experiment imple-
mented in the extreme ultraviolet. With the self-imaging technique, a mask with grid pat-
terns having bumps randomly placed along the line edges reproduces a grid pattern
with smoothed line edges. Simulation explores the approach further for the cases of
sub-100-nm pitch grids.

Index Terms: Talbot effect, nanofabrication, Extreme ultraviolet application.

1. Introduction

In this work, we analyze the restoration effect produced in Talbot images applied to nanolitho-

graphy. Talbot lithography in the extreme ultraviolet (EUV) has been demonstrated as a conve-
nient method to fabricate nanostructures. The technique is of a great interest for many

applications, requiring well-defined periodic structures, such as defect free solar cells, semicon-

ductor photonic devices fabrication, or pre-patterning for self-assembled growth of quantum

dots (QDs) arrays [1].

The Talbot effect, or self-imaging, is a well-known optical phenomenon. When a coherent

plane wave impinges on a periodic object such as a grating, an image is generated at regular

Vol. 8, No. 3, June 2016 2600209

IEEE Photonics Journal Self-Image of Rough-Line Grids: EUV Talbot



distances away from the object. This distance, i.e., the so-called Talbot distance ðzT Þ, is deter-

mined by

zT ¼ 2 � d2=� (1)

where d is the pitch (period) of the object structures, and � is the wavelength of illumination [2],

[3]. The Talbot pattern is repeated in the planes located at distances z ¼ n � zT , where n is a pos-

itive integer. The self-imaging effect can be utilized in lithography to replicate nanoscale periodic

structures illuminating a periodic mask with coherent EUV radiation. This approach called EUV
Talbot lithography has been examined in many aspects, e.g., showing its capability to replicate

complex patterns [4], the possibility to obtain spatial frequency multiplication [5], and the charac-

teristic of defect tolerant printing [6].

The quality of the patterned structures is important, because it influences the functionality of

the device. The fidelity of the printed pattern is particularly critical in the fabrication of micro-

electronics components. The microelectronic industry had invested significant amount of effort

and resources to mitigate this problem, localizing and repairing defects in the lithography

masks. However, in addition, in other applications besides the main stream of the micro-
components industry, the quality of the lithography print is instrumental to a successful device

fabrication and performance.

Talbot lithography is particularly well adapted to produce high quality lithography prints with

high resolution over large areas. It has been shown that the Talbot effect can reproduce the de-

fect free images from a defective periodic mask. This filtering characteristic was identified as a

convenient way to improve the quality of the print in a lithography process [7], [8]. The defect tol-

erance characteristic of the Talbot images is well studied in the bibliography. It was shown that

a mask with a periodic pattern, which is locally damaged, produces a defect-free copy at the
Talbot distance. The effect of a defect on the pattern size around the defect in ArF Talbot lithog-

raphy was investigated for submicron patterns [9]. In this case, the periodic mask included regu-

larly distributed defects. On the other hand, it was shown how the presence of spherical

particles behind gratings affects the formation of Talbot self-images [10]. The tolerance in an-

gles of continuously self-imaging gratings was studied for nonparaxial illumination both numeri-

cally and experimentally [11]. The defect tolerant Talbot imaging was studied for lithography

applications with a EUV laser in the case of masks with complex designs [6], [12]. For the partic-

ular case of a line grating, it is increasingly difficult to fabricate a straight-line edge when the
pitch is reduced. Thus, it would be worth to analyze the restoration effect of the Talbot image in

this case, quantifying the quality of the replicated pattern for the rough-line grid. In this work, we

analyze with numerical simulations and experimental results the effectiveness of EUV Talbot

lithography to improve the lithography print from rough line grid masks. For the test we used a

binary transmission mask fabricated in an opaque membrane with slits opened through it and a

coherent EUV high-photon flux laser. We observed improvement in the pattern recorded in the

photoresist compared with the original pattern on the mask. We also performed a model calcula-

tion of the obtained image for sub-100 nm pitches and analyzed the limits of the improvement.

2. Simulated Demonstration

Fig. 1 illustrates the scheme of the self-imaging effect. When the mask [Fig. 1(a)] is illuminated

by a plane wave, a replica of the mask’s pattern is observed at the Talbot plane zT [Fig. 1(b)].

For the simulation, a line grid pattern with rough edges was created. Bumps of ∼100 nm radius

were randomly distributed along the line edges. The size of the bumps along the edges of the
slits that produce the roughness was selected to be bigger than the cut-off size defined as

�x � �=2� � 7:5 nm for the wavelength at 46.9 nm. This selection validates the results of the

scalar theory used in the simulations. The distribution was performed using the random function

in MATLAB’s built-in functions. The diffraction pattern was calculated using the Fresnel diffrac-

tion formalism, by the fast Fourier transform method [13]. The scalar diffraction method assumes

the mask as the thin mask approximation (TMA). The simulation is performed in a finite grid of
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�x ¼ 0:5 nm and �y ¼ 0:5 nm over a field of 50 �m� 50 �m in the mask. Fig. 2 shows the
simulated images of (a) a mask with randomly rough lines and (b) the self-image at zT .

The simulation shows that the self-image at zT has significantly better quality, in which the

bumps along edges are smoothed out over the grid. As a consequence the rough lines were

straightened in the self-image. The roughness along an edge was quantified using standard de-

viation ð�Þ defined as

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
X

N

i¼1

ðxi � xÞ2

v

u

u

t (2)

Fig. 2. Simulated images of (a) a mask with randomly rough lines and (b) the self-image at zT .

Fig. 1. Scheme of the self-imaging setup. (a) Talbot mask. (b) Self-image produced at a distance zT .
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where N is the number of samplings along a line, and the quantity in the bracket is the deviation

of the edge of the slit from the straight line at the sampling point i. In the case of the self-image,

the deviation of the edge is determined after a binary thresholding of the calculated image. Con-

sequently the deviation of the edge depends on the value selected for the threshold. Fig. 3
shows the calculated � for different threshold values ranging from 0.05 to 0.7. The calculated

� ¼ 95 nm on the mask [see Fig. 2(a)] was reduced to � ffi 32 nm in the Talbot pattern [Fig. 2(b)].

In the analysis, the parabolic curve of � in the Talbot pattern occurred due to the irregular inten-

sity distribution of the areal image of Talbot pattern. When the threshold value is either too high

or low, the difference of intensity value between neighboring x i can be very large. This causes

the higher � values in the areal image as compared with the value obtained for the mask.

3. Experimental Demonstration

The experimental demonstration was performed with an EUV laser and a transmission Talbot

mask with a setup as following. The transmission mask and the wafer are aligned in the optical

axis as illustrated in Fig. 1. The monochromatic EUV illumination of wavelength 46.9 nm was

generated by a capillary discharge plasma laser [14]. The capillary discharge plasma produces

a highly spatial and temporal coherent beam well suited for the application described in this

work. The spatial coherence length at the position where the self image was obtained was

around 350 �m, which covered the whole area of the mask, assuring a fully spatial coherent illu-

mination. The temporal coherence of the laser is ��=� � 3:5� 10�5 [15]–[17]. The exposure

dose at the sample plane was about 0.1–0.3 mJ/cm2 per pulse [12], [18].

The transmission Talbot mask was defined using a focused ion beam (FIB) tool to drill through

a low stressed Si3N4 membrane. The same binary file that was used for the simulation was fed

into the FIB to make a more precise comparison between the calculation and the experimental
results. After the milling, the mask was deposited with a layer of 50 nm of gold to improve the

absorption in the EUV. The pitch in the mask was 2 �m, and the slit width was ∼500 nm in aver-

age. The illumination field area of the mask was 50 �m� 50 �m. Fig. 4 shows the SEM image

of the fabricated mask.

The depth of focus (DOF) in the Talbot plane is expressed as

DOF ¼
�

ðNAÞ2
¼ � 1þ 4n2 d2

� � A

� �2
 !

(3)

Fig. 3. The � values on the self-image (T ) in dependence of the threshold level and on the mask
(M) in simulation.
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where the A is the area of the mask [4]. With the experimental parameters used the DOF is

∼600 nm for the first Talbot plane, n ¼ 1.

The print was recorded on a silicon wafer spin-coated with 50 nm thick layer of photoresist

(JSR Inc.). During the exposure, the distance from the wafer to mask was maintained close
to the first Talbot distance. After the exposure, the exposed photoresist was developed for

30 seconds and rinsed with 2-Propanol. Fig. 5 shows SEM images of the patterned photoresist.

The quality of the grid pattern is improved when the wafer is close to z ¼ zT (a), (c), rather than

Fig. 5. Patterned photoresist images by self-imaging technique. The exposure dose and the dis-
tance cause the different qualities in the result.

Fig. 4. Free-standing transmission mask having the rough lines grid.
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in the case when the wafer is out of focus (b), (d). The quality improvement is significant when

the distance is precisely controlled to be the Talbot distance. The quality also depends on the

exposure time, because the threshold of intensity impacts the development results, as shown

in Fig. 5(a), (c) and (b), (d) that the photoresists were exposed with 75 and 110 shots, respec-
tively. Fig. 6(a) is the zoomed-in image of Fig. 5(c). Fig. 6(b) is an AFM image taken at the

central part of sample. The roughness is significantly decreased in the print as compared to

the roughness in the mask.

4. Results and Discussions

In order to compare the roughness in the mask and the one in the self-image, the images shown

in Figs. 4 and 6(b) were converted into binary images as shown in Fig. 7. In this case, the gray-

scale image turns into the binary image by the balanced histogram thresholding method (BHT).

Fig. 6. Patterned photoresist measured with SEM and AFM (right bottom image).

Fig. 7. (a) Mask image and (b) self-image after the binary image conversion.

Vol. 8, No. 3, June 2016 2600209

IEEE Photonics Journal Self-Image of Rough-Line Grids: EUV Talbot



The pixels fall within a desired range of intensity value, thus the image is divided to black or white

from two main classes: background and foreground [19]. The improvement of quality can be

seen in Fig. 7(a) and (b). This apparent improvement correlates well with the reduction of the �.
Fig. 8 plots the calculated � for the mask and the Talbot image for 18 locations along the edges

of the slits. The � measured in the print are significantly lower than those in mask. The average

values are � ¼ 88 nm in mask and � ¼ 46 nm in the print. The � measured in the experimental
result correlates well with the � obtained in the simulation assuming a threshold for the binariza-

tion in the range 0.15–0.3 in Fig. 3. In both simulation and experiment, the � values are reduced

by about a factor of 2 or more.

We also analyzed the influence of the pitch, the slit width and the � of the mask to the quality

of the print. The study has completed by measuring the roughness of the Talbot image obtained

with different masks.

First, to evaluate the influence of the pitch, we tested three different masks. The mask pitches

were p ¼ 100 nm, p ¼ 60 nm, p ¼ 30 nm. In those pitches, the roughness was � ¼ 6:2 nm,
� ¼ 3:9 nm, and � ¼ 2 nm respectively. Due to the averaging characteristic of the Talbot effect,

the � in the self-image became � > 3 nm, � > 2 nm, and � > 1 nm respectively. The � in the

mask (M) and at the Talbot plane (T ) for selected pitches are plotted in Fig. 9.

Fig. 8. The � values in the mask and Talbot patterns.

Fig. 9. Simulation result: � curves in masks (M) and in self-images (T ) for the pitches of 100, 60,
and 30 nm.
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The complete lithography method includes processes that determine the quality of the print.

The printed result is influenced by the photoresist response and the development process

among other factors. However, the analysis presented here with the thresholding method in the

areal image is intended to study only the self-healing effect in the optical image. As discussed
in Fig. 3, when we assume a threshold around 0.3 the simulation and the experimental results

are in good agreement. Using this value for the threshold, the parameter � in the self-image be-

comes 4 nm, 2.1 nm and 1.1 nm, respectively. This represents a significant improvement of the

self-imaging for sub-100 nm pitch gratings. The roughness is reduced by ∼50% for all three

masks with different pitches and initial values of the sigma. This amount of improvement is ex-

pected for all pitches considered in this analysis.

Second, we tested various mask pitches with identical �. From this simulation, we used EUV

illumination at 13.5 nm wavelength, which is a candidate for the source of the next generation of
optical lithography. The pitches selected for this test were 100 nm, 60 nm and 40 nm, with � in

the three cases fixed at 3.2 nm in mask. As shown in Fig. 10(a), the � in the self-image is de-

creased from ∼2 nm to ∼1 nm as the pitch is increased from 40 nm to 100 nm. Our analysis indi-

cates that the resulting sigma in the Talbot image is proportional to the ratio of the initial sigma

and the slit-width (pitch/2) in the mask. Therefore, in Fig. 10(a), the sigma for the mask with

high-dense grid is increased in comparison to the one for the mask with low-dense grid.

Lastly, the slit-width was varied with fixed pitch and � in the mask. The values of the slit-width

were 70 nm, 50 nm, and 30 nm, where a fixed pitch of 100 nm and a fixed � ¼ 3:2 nm in the
mask. As can be seen in Fig. 10(b), the minimum � values in the self-image were ∼0.9 nm.

However the dependence on thresholding is different in the three cases enabling wider thresh-

old values for smaller slit widths. For example, for � ¼ 2 nm, the threshold increases as the slit

width (ow) is decreased as shown in Fig. 10(b). This implies that the fabrication requirements

can be relaxed with adjustment of the slit-width. Those results can be of a great interest in

nano-patterning, where the line-edge roughness (LER) is one of the significant issues in elec-

tronic device fabrication.

5. Conclusion

In conclusion, we have demonstrated a submicron printing technique based on self-imaging and

performed a detailed characterization of the quality improvement in the print relative to the

mask. The rough grid pattern on the mask produces a self-image with line-edge roughness re-

duced by about a factor of 2 for 2 �m to 30 nm pitch gratings. This is due to the fact that line

Fig. 10. Simulation results for various parameters. (a) The � at zT (T) for pitches of 100, 60, and
40 nm when an identical � (M) in mask is used. (b) The � at zT (T) for opening widths of 100, 70,
and 50 nm when a fixed 100-nm pitch and � ¼ 3:2 nm in the mask are used.
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edges are randomly rough in the mask, which forms a smeared self-image that averages the

roughness effectively reducing the �. The improvement in the Talbot image is determined by

the number of diffraction orders involved which in turn depends on the particular configuration

(numerical aperture and periodicity) of the mask [20]. In the simulation, the � is improved in

self-images for sub 30 nm pitch when EUV radiation is assumed in the illumination.
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