000809864 001__ 809864
000809864 005__ 20210129223155.0
000809864 0247_ $$2doi$$a10.1088/0022-3727/48/37/375101
000809864 0247_ $$2ISSN$$a0022-3727
000809864 0247_ $$2ISSN$$a0262-8171
000809864 0247_ $$2ISSN$$a0508-3443
000809864 0247_ $$2ISSN$$a1361-6463
000809864 0247_ $$2WOS$$aWOS:000360975100003
000809864 037__ $$aFZJ-2016-02790
000809864 082__ $$a530
000809864 1001_ $$0P:(DE-HGF)0$$aKim, Hyun-su$$b0$$eCorresponding author
000809864 245__ $$aOptical properties of 2D fractional Talbot patterns under coherent EUV illumination
000809864 260__ $$aBristol$$bIOP Publ.$$c2015
000809864 3367_ $$2DRIVER$$aarticle
000809864 3367_ $$2DataCite$$aOutput Types/Journal article
000809864 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467706518_2700
000809864 3367_ $$2BibTeX$$aARTICLE
000809864 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809864 3367_ $$00$$2EndNote$$aJournal Article
000809864 520__ $$aWe investigate optical properties of (2D) fractional Talbot patterns under illumination with EUV laser light. The fractional Talbot effect, due to spatial frequency multiplication, can enable patterning of micro and nano-structures with various feature sizes using a micro-scale pitch mask. The experiment is performed with a free-standing mask fabricated by focused ion beam milling and a highly coherent illumination at 46.9 nm wavelength generated by a compact capillary discharge Ne-like Argon laser. As a result of spatial frequency multiplication, structure density of a square array of apertures in the mask was increased by a factor of up to 9 at the recording plane. The depth of field of the fractional Talbot images has been investigated using Fresnel diffraction analysis. Added field distribution complexity caused by asymmetry of the 2D arrays was observed both in simulation and in the experiment. This approach could be useful for sub-micron structuring of 2D patterns for various applications including among others the fabrication of photonic crystals, quantum dots, and also of submicron-electronic devices.
000809864 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000809864 588__ $$aDataset connected to CrossRef
000809864 7001_ $$0P:(DE-HGF)0$$aLi, W.$$b1
000809864 7001_ $$0P:(DE-HGF)0$$aDanylyuk, S.$$b2
000809864 7001_ $$0P:(DE-HGF)0$$aBrocklesby, W. S.$$b3
000809864 7001_ $$0P:(DE-HGF)0$$aMarconi, M. C.$$b4
000809864 7001_ $$0P:(DE-Juel1)157957$$aJuschkin, Larissa$$b5
000809864 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/48/37/375101$$gVol. 48, no. 37, p. 375101 -$$n37$$p375101 -$$tJournal of physics / D$$v48$$x1361-6463$$y2015
000809864 8564_ $$uhttps://juser.fz-juelich.de/record/809864/files/d_48_37_375101.pdf$$yRestricted
000809864 8564_ $$uhttps://juser.fz-juelich.de/record/809864/files/d_48_37_375101.pdf?subformat=pdfa$$xpdfa$$yRestricted
000809864 909CO $$ooai:juser.fz-juelich.de:809864$$pVDB
000809864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166021$$aForschungszentrum Jülich$$b0$$kFZJ
000809864 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000809864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157957$$aForschungszentrum Jülich$$b5$$kFZJ
000809864 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)157957$$aRWTH Aachen$$b5$$kRWTH
000809864 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000809864 9141_ $$y2016
000809864 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000809864 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000809864 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS D APPL PHYS : 2014
000809864 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809864 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809864 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809864 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809864 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809864 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809864 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000809864 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000809864 920__ $$lyes
000809864 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000809864 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000809864 980__ $$ajournal
000809864 980__ $$aVDB
000809864 980__ $$aI:(DE-Juel1)PGI-9-20110106
000809864 980__ $$aI:(DE-82)080009_20140620
000809864 980__ $$aUNRESTRICTED