000810025 001__ 810025
000810025 005__ 20210129223238.0
000810025 0247_ $$2doi$$a10.1038/srep27333
000810025 0247_ $$2Handle$$a2128/11427
000810025 0247_ $$2WOS$$aWOS:000377127900002
000810025 0247_ $$2altmetric$$aaltmetric:8515945
000810025 0247_ $$2pmid$$apmid:27263468
000810025 037__ $$aFZJ-2016-02908
000810025 041__ $$aEnglish
000810025 082__ $$a000
000810025 1001_ $$0P:(DE-HGF)0$$aNguyen, G. T. T.$$b0
000810025 245__ $$aChalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides
000810025 260__ $$aLondon$$bNature Publishing Group$$c2016
000810025 3367_ $$2DRIVER$$aarticle
000810025 3367_ $$2DataCite$$aOutput Types/Journal article
000810025 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484557604_30759
000810025 3367_ $$2BibTeX$$aARTICLE
000810025 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810025 3367_ $$00$$2EndNote$$aJournal Article
000810025 520__ $$aWeeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2′,3′,4′,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2′,3′,4′-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme.
000810025 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000810025 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x1
000810025 588__ $$aDataset connected to CrossRef
000810025 7001_ $$0P:(DE-HGF)0$$aErlenkamp, G.$$b1
000810025 7001_ $$0P:(DE-Juel1)164363$$aJäck, O.$$b2$$ufzj
000810025 7001_ $$0P:(DE-Juel1)143645$$aKüberl, A.$$b3$$ufzj
000810025 7001_ $$0P:(DE-Juel1)128943$$aBott, M.$$b4$$ufzj
000810025 7001_ $$0P:(DE-Juel1)143649$$aFiorani, F.$$b5$$ufzj
000810025 7001_ $$0P:(DE-HGF)0$$aGohlke, H.$$b6
000810025 7001_ $$0P:(DE-HGF)0$$aGroth, G.$$b7$$eCorresponding author
000810025 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep27333$$gVol. 6, p. 27333 -$$p27333 -$$tScientific reports$$v6$$x2045-2322$$y2016
000810025 8564_ $$uhttps://juser.fz-juelich.de/record/810025/files/srep27333.pdf$$yOpenAccess
000810025 8564_ $$uhttps://juser.fz-juelich.de/record/810025/files/srep27333.gif?subformat=icon$$xicon$$yOpenAccess
000810025 8564_ $$uhttps://juser.fz-juelich.de/record/810025/files/srep27333.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810025 8564_ $$uhttps://juser.fz-juelich.de/record/810025/files/srep27333.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810025 8564_ $$uhttps://juser.fz-juelich.de/record/810025/files/srep27333.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810025 8564_ $$uhttps://juser.fz-juelich.de/record/810025/files/srep27333.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810025 909CO $$ooai:juser.fz-juelich.de:810025$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000810025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164363$$aForschungszentrum Jülich$$b2$$kFZJ
000810025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143645$$aForschungszentrum Jülich$$b3$$kFZJ
000810025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich$$b4$$kFZJ
000810025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b5$$kFZJ
000810025 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HHU Duesseldorf$$b7
000810025 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000810025 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x1
000810025 9141_ $$y2016
000810025 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810025 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000810025 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000810025 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000810025 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2014
000810025 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000810025 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810025 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810025 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810025 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2014
000810025 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810025 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810025 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810025 920__ $$lyes
000810025 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000810025 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000810025 980__ $$ajournal
000810025 980__ $$aVDB
000810025 980__ $$aI:(DE-Juel1)IBG-2-20101118
000810025 980__ $$aI:(DE-Juel1)IBG-1-20101118
000810025 980__ $$aUNRESTRICTED
000810025 9801_ $$aFullTexts