000810228 001__ 810228
000810228 005__ 20240712100951.0
000810228 0247_ $$2doi$$a10.5194/acp-16-7171-2016
000810228 0247_ $$2ISSN$$a1680-7316
000810228 0247_ $$2ISSN$$a1680-7324
000810228 0247_ $$2Handle$$a2128/11456
000810228 0247_ $$2WOS$$aWOS:000378354600031
000810228 0247_ $$2altmetric$$aaltmetric:8634833
000810228 037__ $$aFZJ-2016-03095
000810228 082__ $$a550
000810228 1001_ $$0P:(DE-HGF)0$$aSchallhart, Simon$$b0$$eCorresponding author
000810228 245__ $$aCharacterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest
000810228 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000810228 3367_ $$2DRIVER$$aarticle
000810228 3367_ $$2DataCite$$aOutput Types/Journal article
000810228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1465825571_24802
000810228 3367_ $$2BibTeX$$aARTICLE
000810228 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810228 3367_ $$00$$2EndNote$$aJournal Article
000810228 520__ $$aRecently, the number and amount of biogenically emitted volatile organic compounds (VOCs) has been discussed in great detail. Depending on the ecosystem, the published number varies between a dozen and several hundred compounds. We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. The fluxes were measured by a proton transfer reaction-time-of-flight (PTR-ToF) mass spectrometer and calculated using the eddy covariance (EC) method. Detectable fluxes were observed for up to 29 compounds, dominated by isoprene, which comprised over 60 % of the total upward flux (on a molar basis). The daily average of the total VOC upward flux was 10.4 nmol m−2 s−1. Methanol had the highest concentration and accounted for the largest downward flux. Methanol seemed to be deposited to dew, as the downward flux happened in the early morning, right after the calculated surface temperature came closest to the calculated dew point temperature.We estimated that up to 30 % of the upward flux of methyl vinyl ketone (MVK) and methacrolein (MACR) originated from atmospheric oxidation of isoprene. A comparison between two methods for the flux detection (manual and automated) was made. Their respective advantages and disadvantages were discussed and the differences in their results shown. Both provide comparable results.
000810228 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000810228 588__ $$aDataset connected to CrossRef
000810228 7001_ $$0P:(DE-HGF)0$$aRantala, Pekka$$b1
000810228 7001_ $$0P:(DE-HGF)0$$aNemitz, Eiko$$b2
000810228 7001_ $$0P:(DE-HGF)0$$aTaipale, Ditte$$b3
000810228 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b4$$ufzj
000810228 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b5$$ufzj
000810228 7001_ $$0P:(DE-HGF)0$$aLoubet, Benjamin$$b6
000810228 7001_ $$0P:(DE-HGF)0$$aGerosa, Giacomo$$b7
000810228 7001_ $$0P:(DE-HGF)0$$aFinco, Angelo$$b8
000810228 7001_ $$0P:(DE-HGF)0$$aRinne, Janne$$b9
000810228 7001_ $$0P:(DE-HGF)0$$aRuuskanen, Taina M.$$b10
000810228 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-7171-2016$$gVol. 16, no. 11, p. 7171 - 7194$$n11$$p7171 - 7194$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000810228 8564_ $$uhttps://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.pdf$$yOpenAccess
000810228 8564_ $$uhttps://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.gif?subformat=icon$$xicon$$yOpenAccess
000810228 8564_ $$uhttps://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810228 8564_ $$uhttps://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810228 8564_ $$uhttps://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810228 8564_ $$uhttps://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810228 909CO $$ooai:juser.fz-juelich.de:810228$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000810228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b4$$kFZJ
000810228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b5$$kFZJ
000810228 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000810228 9141_ $$y2016
000810228 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000810228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810228 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810228 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000810228 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000810228 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810228 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810228 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000810228 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810228 920__ $$lyes
000810228 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000810228 9801_ $$aFullTexts
000810228 980__ $$ajournal
000810228 980__ $$aVDB
000810228 980__ $$aUNRESTRICTED
000810228 980__ $$aI:(DE-Juel1)IEK-8-20101013
000810228 981__ $$aI:(DE-Juel1)ICE-3-20101013