001     810228
005     20240712100951.0
024 7 _ |a 10.5194/acp-16-7171-2016
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/11456
|2 Handle
024 7 _ |a WOS:000378354600031
|2 WOS
024 7 _ |a altmetric:8634833
|2 altmetric
037 _ _ |a FZJ-2016-03095
082 _ _ |a 550
100 1 _ |a Schallhart, Simon
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest
260 _ _ |a Katlenburg-Lindau
|c 2016
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1465825571_24802
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recently, the number and amount of biogenically emitted volatile organic compounds (VOCs) has been discussed in great detail. Depending on the ecosystem, the published number varies between a dozen and several hundred compounds. We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. The fluxes were measured by a proton transfer reaction-time-of-flight (PTR-ToF) mass spectrometer and calculated using the eddy covariance (EC) method. Detectable fluxes were observed for up to 29 compounds, dominated by isoprene, which comprised over 60 % of the total upward flux (on a molar basis). The daily average of the total VOC upward flux was 10.4 nmol m−2 s−1. Methanol had the highest concentration and accounted for the largest downward flux. Methanol seemed to be deposited to dew, as the downward flux happened in the early morning, right after the calculated surface temperature came closest to the calculated dew point temperature.We estimated that up to 30 % of the upward flux of methyl vinyl ketone (MVK) and methacrolein (MACR) originated from atmospheric oxidation of isoprene. A comparison between two methods for the flux detection (manual and automated) was made. Their respective advantages and disadvantages were discussed and the differences in their results shown. Both provide comparable results.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rantala, Pekka
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nemitz, Eiko
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Taipale, Ditte
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tillmann, Ralf
|0 P:(DE-Juel1)5344
|b 4
|u fzj
700 1 _ |a Mentel, Thomas F.
|0 P:(DE-Juel1)16346
|b 5
|u fzj
700 1 _ |a Loubet, Benjamin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gerosa, Giacomo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Finco, Angelo
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rinne, Janne
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ruuskanen, Taina M.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.5194/acp-16-7171-2016
|g Vol. 16, no. 11, p. 7171 - 7194
|0 PERI:(DE-600)2069847-1
|n 11
|p 7171 - 7194
|t Atmospheric chemistry and physics
|v 16
|y 2016
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/810228/files/acp-16-7171-2016.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:810228
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)16346
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21