000810253 001__ 810253
000810253 005__ 20210129223346.0
000810253 0247_ $$2doi$$a10.1111/pce.12720
000810253 0247_ $$2WOS$$aWOS:000381496900014
000810253 037__ $$aFZJ-2016-03113
000810253 041__ $$aEnglish
000810253 082__ $$a570
000810253 1001_ $$0P:(DE-HGF)0$$aStewart, Jared J.$$b0
000810253 245__ $$aGrowth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe
000810253 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2016
000810253 3367_ $$2DRIVER$$aarticle
000810253 3367_ $$2DataCite$$aOutput Types/Journal article
000810253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1466142141_27117
000810253 3367_ $$2BibTeX$$aARTICLE
000810253 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810253 3367_ $$00$$2EndNote$$aJournal Article
000810253 520__ $$aThe plasticity of leaf form and function in European lines of Arabidopsis thaliana was evaluated in ecotypes from Sweden and Italy grown under contrasting (cool versus hot) temperature regimes. Although both ecotypes exhibited acclimatory adjustments, the Swedish ecotype exhibited more pronounced responses to the two contrasting temperature regimes in several characterized features. These responses included thicker leaves with higher capacities for photosynthesis, likely facilitated by a greater number of phloem cells per minor vein for the active loading and export of sugars, when grown under cool temperature as opposed to leaves with a higher vein density and a greater number of tracheary elements per minor vein, likely facilitating higher rates of transpirational water loss (and thus evaporative cooling), when grown under hot temperature with high water availability. In addition, only the Swedish ecotype exhibited reduced rosette growth and greater levels of foliar tocopherols under the hot growth temperature. These responses, and the greater responsiveness of the Swedish ecotype compared with the Italian ecotype, are discussed in the context of redox signalling networks and transcription factors, and the greater range of environmental conditions experienced by the Swedish versus the Italian ecotype during the growing season in their native habitats.
000810253 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000810253 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000810253 7001_ $$0P:(DE-HGF)0$$aDemmig-Adams, Barbara$$b1
000810253 7001_ $$0P:(DE-HGF)0$$aCohu, Christopher M.$$b2
000810253 7001_ $$0P:(DE-HGF)0$$aWenzl, Coleman A.$$b3
000810253 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b4
000810253 7001_ $$0P:(DE-HGF)0$$aWilliams, W. Adams$$b5$$eCorresponding author
000810253 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.12720$$n7$$p1549–1558$$tPlant, cell & environment$$v39$$x0140-7791$$y2016
000810253 8564_ $$uhttps://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.pdf$$yRestricted
000810253 8564_ $$uhttps://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.gif?subformat=icon$$xicon$$yRestricted
000810253 8564_ $$uhttps://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810253 8564_ $$uhttps://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810253 8564_ $$uhttps://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810253 8564_ $$uhttps://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810253 909CO $$ooai:juser.fz-juelich.de:810253$$pVDB
000810253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b4$$kFZJ
000810253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b4$$kFZJ
000810253 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000810253 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000810253 9141_ $$y2016
000810253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810253 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000810253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2014
000810253 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2014
000810253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810253 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810253 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810253 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810253 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000810253 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810253 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000810253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810253 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810253 920__ $$lyes
000810253 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000810253 980__ $$ajournal
000810253 980__ $$aVDB
000810253 980__ $$aUNRESTRICTED
000810253 980__ $$aI:(DE-Juel1)IBG-2-20101118