001     810253
005     20210129223346.0
024 7 _ |a 10.1111/pce.12720
|2 doi
024 7 _ |a WOS:000381496900014
|2 WOS
037 _ _ |a FZJ-2016-03113
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Stewart, Jared J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe
260 _ _ |a Oxford [u.a.]
|c 2016
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1466142141_27117
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The plasticity of leaf form and function in European lines of Arabidopsis thaliana was evaluated in ecotypes from Sweden and Italy grown under contrasting (cool versus hot) temperature regimes. Although both ecotypes exhibited acclimatory adjustments, the Swedish ecotype exhibited more pronounced responses to the two contrasting temperature regimes in several characterized features. These responses included thicker leaves with higher capacities for photosynthesis, likely facilitated by a greater number of phloem cells per minor vein for the active loading and export of sugars, when grown under cool temperature as opposed to leaves with a higher vein density and a greater number of tracheary elements per minor vein, likely facilitating higher rates of transpirational water loss (and thus evaporative cooling), when grown under hot temperature with high water availability. In addition, only the Swedish ecotype exhibited reduced rosette growth and greater levels of foliar tocopherols under the hot growth temperature. These responses, and the greater responsiveness of the Swedish ecotype compared with the Italian ecotype, are discussed in the context of redox signalling networks and transcription factors, and the greater range of environmental conditions experienced by the Swedish versus the Italian ecotype during the growing season in their native habitats.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Demmig-Adams, Barbara
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cohu, Christopher M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wenzl, Coleman A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 4
700 1 _ |a Williams, W. Adams
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1111/pce.12720
|0 PERI:(DE-600)2020843-1
|n 7
|p 1549–1558
|t Plant, cell & environment
|v 39
|y 2016
|x 0140-7791
856 4 _ |u https://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/810253/files/Stewart_et_al-2016-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:810253
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161185
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT CELL ENVIRON : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT CELL ENVIRON : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21