000810265 001__ 810265
000810265 005__ 20210129223350.0
000810265 0247_ $$2doi$$a10.1016/j.pcrysgrow.2015.11.001
000810265 0247_ $$2ISSN$$a0146-3535
000810265 0247_ $$2ISSN$$a0960-8974
000810265 0247_ $$2ISSN$$a1878-1012
000810265 0247_ $$2ISSN$$a1878-4208
000810265 0247_ $$2WOS$$aWOS:000372761800001
000810265 0247_ $$2altmetric$$aaltmetric:21829378
000810265 037__ $$aFZJ-2016-03125
000810265 082__ $$a540
000810265 1001_ $$0P:(DE-Juel1)138778$$aWirths, S.$$b0$$eCorresponding author$$ufzj
000810265 245__ $$aSi–Ge–Sn alloys: From growth to applications
000810265 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000810265 3367_ $$2DRIVER$$aarticle
000810265 3367_ $$2DataCite$$aOutput Types/Journal article
000810265 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467707579_2703
000810265 3367_ $$2BibTeX$$aARTICLE
000810265 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810265 3367_ $$00$$2EndNote$$aJournal Article
000810265 520__ $$aIn this review article, we address key material parameters as well as the fabrication and application of crystalline GeSn binary and SiGeSn ternary alloys. Here, the transition from an indirect to a fundamental direct bandgap material will be discussed. The main emphasis, however, is put on the Si–Ge–Sn epitaxy. The low solid solubility of α-Sn in Ge and Si of below 1 at.% along with the large lattice mismatch between α-Sn (6.489 Å) and Ge (5.646 Å) or Si (5.431 Å) of about 15% and 20%, respectively, requires non-equilibrium growth processes. The most commonly used approaches, i.e. molecular beam epitaxy (MBE) and chemical vapor deposition (CVD), will be reviewed in terms of crucial process parameters, structural as well as optical quality and employed precursor combinations including Germanium hydrides, Silicon hydrides and a variety of Sn compounds like SnD4, SnCl4 or C6H5SnD3. Special attention is devoted to the growth temperature window and growth rates being the most important growth parameters concerning the substitutional incorporation of Sn atoms into the Ge diamond lattice. Furthermore, the mainly CVD-driven epitaxy of high quality SiGeSn ternary alloys, allowing the decoupling of band engineering and lattice constant, is presented. Since achieving fundamental direct bandgap Sn-based materials strongly depends on the applied strain within the epilayers, ways to control and modify the strain are shown, especially the plastic strain relaxation of (Si)GeSn layers grown on Ge.Based on recently achieved improvements of the crystalline quality, novel low power and high mobility GeSn electronic and photonic devices have been developed and are reviewed in this paper. The use of GeSn as optically active gain or channel material with its lower and potentially direct bandgap compared to fundamentally indirect Ge (0.66 eV) and Si (1.12 eV) provides a viable solution to overcome the obstacles in both fields photonics and electronics. Moreover, the epitaxial growth of Sn-based semiconductors using CMOS compatible substrates on the road toward a monolithically integrated and efficient group IV light emitter is presented.
000810265 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000810265 588__ $$aDataset connected to CrossRef
000810265 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b1$$ufzj
000810265 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b2$$ufzj
000810265 773__ $$0PERI:(DE-600)1479022-1$$a10.1016/j.pcrysgrow.2015.11.001$$gVol. 62, no. 1, p. 1 - 39$$n1$$p1 - 39$$tProgress in crystal growth and characterization of materials$$v62$$x0960-8974$$y2016
000810265 8564_ $$uhttps://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.pdf$$yRestricted
000810265 8564_ $$uhttps://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.gif?subformat=icon$$xicon$$yRestricted
000810265 8564_ $$uhttps://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810265 8564_ $$uhttps://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810265 8564_ $$uhttps://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810265 8564_ $$uhttps://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810265 909CO $$ooai:juser.fz-juelich.de:810265$$pVDB
000810265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich$$b0$$kFZJ
000810265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b1$$kFZJ
000810265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b2$$kFZJ
000810265 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000810265 9141_ $$y2016
000810265 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810265 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810265 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810265 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810265 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810265 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810265 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810265 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROG CRYST GROWTH CH : 2014
000810265 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810265 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810265 920__ $$lyes
000810265 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000810265 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000810265 980__ $$ajournal
000810265 980__ $$aVDB
000810265 980__ $$aUNRESTRICTED
000810265 980__ $$aI:(DE-Juel1)PGI-9-20110106
000810265 980__ $$aI:(DE-82)080009_20140620