001     810265
005     20210129223350.0
024 7 _ |a 10.1016/j.pcrysgrow.2015.11.001
|2 doi
024 7 _ |a 0146-3535
|2 ISSN
024 7 _ |a 0960-8974
|2 ISSN
024 7 _ |a 1878-1012
|2 ISSN
024 7 _ |a 1878-4208
|2 ISSN
024 7 _ |a WOS:000372761800001
|2 WOS
024 7 _ |a altmetric:21829378
|2 altmetric
037 _ _ |a FZJ-2016-03125
082 _ _ |a 540
100 1 _ |a Wirths, S.
|0 P:(DE-Juel1)138778
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Si–Ge–Sn alloys: From growth to applications
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467707579_2703
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this review article, we address key material parameters as well as the fabrication and application of crystalline GeSn binary and SiGeSn ternary alloys. Here, the transition from an indirect to a fundamental direct bandgap material will be discussed. The main emphasis, however, is put on the Si–Ge–Sn epitaxy. The low solid solubility of α-Sn in Ge and Si of below 1 at.% along with the large lattice mismatch between α-Sn (6.489 Å) and Ge (5.646 Å) or Si (5.431 Å) of about 15% and 20%, respectively, requires non-equilibrium growth processes. The most commonly used approaches, i.e. molecular beam epitaxy (MBE) and chemical vapor deposition (CVD), will be reviewed in terms of crucial process parameters, structural as well as optical quality and employed precursor combinations including Germanium hydrides, Silicon hydrides and a variety of Sn compounds like SnD4, SnCl4 or C6H5SnD3. Special attention is devoted to the growth temperature window and growth rates being the most important growth parameters concerning the substitutional incorporation of Sn atoms into the Ge diamond lattice. Furthermore, the mainly CVD-driven epitaxy of high quality SiGeSn ternary alloys, allowing the decoupling of band engineering and lattice constant, is presented. Since achieving fundamental direct bandgap Sn-based materials strongly depends on the applied strain within the epilayers, ways to control and modify the strain are shown, especially the plastic strain relaxation of (Si)GeSn layers grown on Ge.Based on recently achieved improvements of the crystalline quality, novel low power and high mobility GeSn electronic and photonic devices have been developed and are reviewed in this paper. The use of GeSn as optically active gain or channel material with its lower and potentially direct bandgap compared to fundamentally indirect Ge (0.66 eV) and Si (1.12 eV) provides a viable solution to overcome the obstacles in both fields photonics and electronics. Moreover, the epitaxial growth of Sn-based semiconductors using CMOS compatible substrates on the road toward a monolithically integrated and efficient group IV light emitter is presented.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 1
|u fzj
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 2
|u fzj
773 _ _ |a 10.1016/j.pcrysgrow.2015.11.001
|g Vol. 62, no. 1, p. 1 - 39
|0 PERI:(DE-600)1479022-1
|n 1
|p 1 - 39
|t Progress in crystal growth and characterization of materials
|v 62
|y 2016
|x 0960-8974
856 4 _ |u https://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/810265/files/1-s2.0-S0960897415000248-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:810265
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128609
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROG CRYST GROWTH CH : 2014
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21