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We consider necessary conditions for the one-body-reduced density matrix (1RDM) to correspond
to a triplet wave-function of a 2-electron system. The conditions concern the occupation numbers
and are different for the high spin projections, Sz = ±1, and the Sz = 0 projection. Hence, they can
be used to test if an approximate 1RDM functional yields the same energies for both projections.
We employ these conditions in reduced density matrix functional theory calculations for the triplet
excitations of two electron systems. In addition, we propose that these conditions can be used in the
calculation of triplet states of systems with more than two electrons by restricting the active space.
We assess this procedure in calculations for a few atomic and molecular systems. We show that the
quality of the optimal 1RDMs improves by applying the conditions in all the cases we studied.

I. INTRODUCTION

The main focus of reduced density matrix functional
theory (RDMFT) [1], a framework where the one-body
reduced density matrix (1RDM) plays the role of the
fundamental variable, has been the proper description of
ground-state singlet states. Little has been done on de-
veloping a RDMFT treatment of doublet or triplet states
[2–5]. The extension of the theory for such states can fol-
low two different directions which can also be combined.
The first concerns the development of approximate func-
tionals or the extension of existing ones to describe such
states. The second is the derivation of additional con-
ditions to restrict the minimization of the existing func-
tionals to the domain of 1RDMs that correspond to a
prescribed spin state. The present work is a step in the
second direction.
Since the many-electron problem, in general, cannot be

solved exactly, several approximations were introduced
where the total electronic energy is expressed as a func-
tional of a density or density matrix. In this way, one
switches from calculating the many-body state to cal-
culating quantities like the density in density functional
theory (DFT) [6] or the 1RDM in RDMFT. RDMFT
[1, 7] got significant attention in the last 20 years as an
alternative to DFT. Several approximations have been
introduced [8–26] with promising results in cases like
molecular dissociation [10–14, 27] or the gaps of periodic
systems [17, 18, 28, 29], where the results of basic DFT
functionals are not satisfactory. Among these approxima-
tions, a central position is held by the Müller functional
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[8, 10] which was found to overcorrelate substantially. Its
inaccurate reconstruction of the 2RDM in terms of the
1RDM is manifested by the violation of the positivity of
the 2-particle density, which was already recognized by
Müller himself. However, the Müller functional served as
a starting point for further improvements. Several other
functionals were introduced [7] aiming to correct its over-
correlation: the functional of Goedecker and Umrigar [9]
the BBCn (n = 1,2,3) [11, 12, 15], the approximation of
Marques and Lathiotakis [16] and the Power functional
[17–19, 30]. In a different fashion, PNOFn approxima-
tions, n = 1,· · · 6 [13, 20–22], and the theory of the an-
tisymmetrized product of strongly orthogonal geminals
(APSG) [14, 23–25] were developed focusing on improv-
ing the reconstruction of the 2RDM.

In any RDMFT calculation, one searches for the
1RDM that minimizes the total energy functional. How-
ever, the search has to be restricted in the domain of
functions (trial 1RDMs) that satisfy certain constraints,
known as N -representability conditions, which guaran-
tee that the optimal 1RDM corresponds to a fermionic
system. Given the exact ground-state total energy func-
tional, the ensemble N -representability conditions of
Coleman [31] are sufficient to ensure that one finds the
1RDM that corresponds to the nondegenerate ground-
state wave function. The reason is that any ensemble of
pure states would always include excited states and would
lead to a higher total energy. For approximate function-
als, on the other hand, the ensemble conditions do not
guarantee that the minimizing 1RDM could be obtained
from a many-body fermionic wave function. The class of
spin-compensated systems with time-reversal symmetry
is a notable exception, since, in that case, the conditions
for pure-stateN -representability collapse to the ensemble
conditions [32]. The necessary and sufficient conditions



2

for pure-state N -representability, also called generalized
Pauli constraints, have only recently been discussed and
explicitly expressed for systems with a small number of
particles and specific finite sizes of the Hilbert space [33–
39]. Recently, it has been demonstrated that with enforc-
ing only the ensemble conditions in a RDMFT calculation
for open-shell systems, the pure-state conditions will be
violated for many functionals of the 1RDM [40]. Hence,
the enforcement of the pure-state conditions leads to a
different solution. We should mention that the number
of pure-state conditions explodes as the number of elec-
trons and the dimension of the Hilbert space increase and
their consideration in a minimization procedure becomes
a very difficult task.

In many cases, the many-body Hamiltonian commutes
with the total spin and the spin projection in any partic-
ular direction. As a result, one can choose the solutions
of the many-body Schrödinger equation to be eigenstates
of the Hamiltonian, Ŝ

2, and Ŝz simultaneously. Typi-
cal cases where the Hamiltonian does not commute with
the spin operators include the application of nonuniform
magnetic fields to the system or the inclusion of spin-orbit
coupling. However, we are not considering such cases in
this work. Thus, for the cases discussed here, it is desir-
able that the optimal 1RDMs correspond to eigenstates
of the spin operators as well. While the pure-state con-
ditions ensure that there exists a many-body wave func-
tion corresponding to a given 1RDM, there is generally
no guarantee that this many-body state is an eigenstate
of any spin operator or even corresponds to a specific ex-
pectation value of it. Hence, the question arises if one
can find constraints such that the solutions preserve the
symmetries of the original many-body Hamiltonian, i.e.,
whether the optimal 1RDM which one finds in a RDMFT
calculation corresponds to a many-body state with a pre-
scribed, specific total spin and Sz. For the z-component
of the spin, one typically constrains separately the num-
ber of up and down electrons in the system [2] to the cor-

rect integer values. The expectation value of Ŝz is then
given by (N↑ −N↓)/2 (atomic units are used throughout
this paper unless explicitly stated otherwise). However,
this constraint guarantees only that the expectation value
of Ŝz has the correct, prescribed value. Therefore, it is
a necessary condition for the 1RDM to correspond to an
eigenstate of Ŝz but not a sufficient one. The situation
is even more complicated for the total spin. Contrary to
Ŝz the total spin Ŝ

2 is not a single-particle operator. Its
expectation value is, therefore, not a trivial functional
of the 1RDM. Consequently, restricting the 1RDMs to
have a specific expectation value for Ŝ

2 is nontrivial as
well since it requires the knowledge of the expectation
value of Ŝ2 as a functional of the 1RDM. Since this ex-
pectation value can easily be written as a functional of

the 2-body reduced density matrix (2RDM), Γ(2), as [41]

〈Ŝ2〉 = −N(N − 4)

4
(1)

+
∑

σ1,σ2

∫

d3r1d
3r2Γ

(2)(r1σ1, r2σ2|r1σ2, r2σ1),

several attempts have been made to apply constraints
on the 2RDM [3, 5, 42, 43] which then also affect the
1RDM. The same problem arises in DFT because the
density functional to calculate 〈Ŝ2〉 is unknown. As an

approximate functional, one then usually evaluates 〈Ŝ2〉
using the Kohn-Sham Slater determinant. However, this,
in general, does not yield the correct value of 〈Ŝ2〉 of the
interacting system [44–46].
In this work, we discuss some necessary conditions for

the 1RDM of a 2-electron system to correspond to a
triplet configuration. These conditions can also be de-
rived from symmetry considerations of the triplet wave
function[47]. In analogy to the pure-state conditions, for
systems with a triplet ground-state the exact functional
would find the corresponding 1RDM in the energy mini-
mization without applying additional constraints. As we
see, the conditions are generally violated by the 1RDMs
obtained from the three approximate functionals consid-
ered here, namely, the Müller, the BBC3, and the Power
functionals, when they are not explicitly enforced. More-
over, using the necessary conditions, we show that the
BBC3 and the Power functionals break the energy degen-
eracy between the highly polarized triplet state (Sz = 1)
and the Sz = 0 one, which is a clear deficiency of these
approximations. We also apply these conditions, in an
approximate way, to systems with an even number of
electrons that is larger than two. In this case, we assume
that N − 2 natural orbitals form a singlet configuration
and only two active electrons form the triplet. We ap-
ply the triplet conditions to various small systems, which
have a singlet ground state, to calculate the first excited
triplet state. We show that, by imposing these con-
straints, the results for the optimal 1RDMs are closer to
exact than the results obtained without imposing them.
In most cases, the total energies of the first excited triplet
states also improve when the constraints are applied. For
the Müller functional we also report values of 〈Ŝ2〉 since
this functional provides an approximation for the whole
2RDM in terms of the 1RDM. For the other two func-
tionals, BBC3 and Power, only the energy functional is
available and of course expectation values of Ŝ2 cannot
be reported.
This paper is organized as follows: In Section II, we

present the necessary conditions which we consider for
the triplet state of 2-electron systems and their general-
ization in order to be applicable to more electrons. Our
results are presented in Section III, where we assess the
inclusion of these constraints in RDMFT calculations as
far as the optimal 1RDM and the total energy of the low-
est triplet state are concerned. Finally, our conclusions
are included in Section IV.
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II. SPIN CONSTRAINTS

Writing the 1RDM, γ(r, r′) in its spectral representa-
tion

γ(r, r′) =

∞
∑

j=1

njϕ
∗
j (r

′)ϕj(r) (2)

with the occupation numbers nj and the natural or-
bitals ϕj(r) one can easily express the ensemble N -
representability conditions [31] as

∞
∑

j=1

nj = N, 0 ≤ nj ≤ 1. (3)

These two conditions ensure that the 1RDM corresponds
to a system of N fermions but not necessarily to a pure
N -particle state. Obviously, in any practical calculation
the number of natural orbitals is restricted to a finite
number M with M > N which is a valid approxima-
tion since the occupation numbers nj fall off rapidly for
j > N . Restricting the system not only to fermionic en-
sembles but actual N -particle states requires additional
constraints which increase rapidly in number with the
number of particles N and the number of orbitals M .
For small N and M they can be given explicitly [33–35].
In the present work, we allow for spin-dependent den-

sity matrices and occupation numbers, the natural or-
bitals, however, remain spin independent [2], i.e.,

γσ(r, r
′) =

∞
∑

j=1

njσϕ
∗
j (r

′)ϕj(r) (4)

and

γ(r, r′) =
∑

σ=↑,↓

γσ(r, r
′). (5)

Note that the choice of having the same set of spatial
orbitals for both spin channels is not related to describ-
ing density matrices with a specific Sz (which can be
also achieved with different sets of spin orbitals [4]) but,
facilitates the description of γ with a specific expecta-
tion value of Ŝ2. In approximations which use a single
Slater determinant, the introduction of spatial orbitals
that are different for the two spins induces the so-called
spin contamination problem (see for example Ref. [48]).
This problem is completely avoided when the orbitals
are spin-independent. In analogy, in RDMFT, as we see
in the present work, the assumption of spin-independent
spatial orbitals leads to necessary conditions for fixing the
correct expectation value of Ŝ2 for two electrons which
take a simple form and involve only the spin-dependent
occupation numbers. From now on, with the notation Sz

we mean, in general, the expectation value 〈Ŝz〉.
In order to describe a system with a specific Sz one

requires that

∞
∑

j=1

njσ = Nσ,
∑

σ

Nσ = N. (6)

However, while this guarantees that the expectation
value of Ŝz is given by (N↑−N↓)/2, it is only a necessary
but not a sufficient condition for the 1RDM to correspond
to an eigenstate of Ŝz. For example, the state

Ψ(r1σ1, r2σ2) =
1√
2

(

|1↑2↑〉+ |3↓4↓〉
)

(7)

is a linear combination of an Sz = 1 and an Sz = −1
eigenstate. We denote the natural orbital ϕ1(r) being
occupied with a spin-up electron as 1↑ and the Slater
determinant as | 〉. The nonzero occupation numbers of
this state are given by

n1↑ = n2↑ = n3↓ = n4↓ =
1

2
, (8)

and the sum of the occupation numbers in each spin chan-
nel is N↑ = N↓ = 1. Thus, even when both N↑ and N↓

are fixed to integer values, the 1RDM does not need to
correspond to an eigenstate of the Ŝz operator. Excep-
tions are the maximally polarized states, i.e., for fixed
N↑ = N and N↓ = 0 or vice versa. In these cases, one

is guaranteed to find an Ŝz eigenstate with Sz = ±N/2.

Furthermore, for these states there exists only one Ŝ
2

eigenstate. Therefore, in this specific situation, enforcing
a certain value for Sz ensures that the 1RDM corresponds
to an eigenstate of both Ŝz and Ŝ

2 with the latter having
the eigenvalue S(S +1) = (N/2)(N/2+ 1), provided one
enforces pure-state N -representability. If pure-state N -
representability is not enforced the calculation will gen-
erally yield an ensemble of states with Sz = ±N/2. In
other words, each of the states in the ensemble will be
an eigenstate of Ŝz and Ŝ

2 and the expectation values
of the whole ensemble will be ±N/2 and N/2(N/2 + 1),
respectively. The pure-state N -representability can be
ensured by simply transferring the known pure-state N -
representability conditions [33–35, 37, 38] to the occupa-
tion numbers of the spin channel that is occupied in the
system.
For N = 2, there are only two possible configurations

for the total spin, S = 1 or S = 0. The fully polarized
states correspond to Sz = ±1 and, as discussed above,
are easy to distinguish in RDMFT from the Sz = 0 states.
The necessary and sufficient conditions for pure-state N -
representability for N = 2 only require a double degener-
acy of the occupation numbers [47]. Hence, enforcing all
occupation numbers of the up (down) spin channel to be
doubly degenerate yields a triplet eigenstate with Sz = 1
(Sz = −1). The question remains how to distinguish be-
tween the two Sz = 0 states, i.e., the triplet state with
Sz = 0 and the singlet state. We can construct the wave
function for the triplet state with Sz = 0 starting from
the fully polarized state

|S = 1, Sz = 1〉 = a1|1↑2↑〉+a2|3↑4↑〉+a3|5↑6↑〉 · · · . (9)

Note that one needs an even number of natural orbitals
M since only doubly excited Slater determinants are al-
lowed in the expansion. Including a determinant which
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is a single excitation of any other determinant in the ex-
pansion leads to off-diagonal terms in the 1RDM which
is forbidden, as we are constructing the Slater determi-
nants from natural orbitals. As one can see, the occu-
pation numbers for such a state are pairwise degenerate
with

n1↑ = n2↑ = |a1|2, n3↑ = n4↑ = |a2|2 · · · , (10)

i.e.. the pure-state constraint is satisfied. Applying Ŝ−

to the state (9) we obtain

|S = 1, Sz = 0〉 = 1√
2

(

a1[|1↓2↑〉+ |1↑2↓〉] (11)

+a2[|3↓4↑〉+ |3↑4↓〉] + · · ·
)

,

where 1↑ denotes that the natural orbital ϕ1 is occupied
with an up electron in the Slater determinant, and the
spatial dependence of 1↑ and 1↓ is identical. The corre-
sponding occupation numbers are 4-fold degenerate with

n1↑ = n1↓ = n2↑ = n2↓ = |a1|2/2, (12)

n3↑ = n3↓ = n4↑ = n4↓ = |a2|2/2,
· · ·

We also see from Eqs. (9) and (11) that the spatial
parts of the natural orbitals of the two spin channels are
the same since the spin operator only acts on the spin
parts. Corresponding to the triplet Sz = 0 state there
also exists a singlet state

|S = 0, Sz = 0〉 = 1√
2

(

a1[|1↓2↑〉 − |1↑2↓〉] (13)

+a2[|3↓4↑〉 − |3↑4↓〉] + · · ·
)

which also has the occupation numbers given by Eq. (12).
In other words, the 4-fold degeneracy of the occupation
numbers is a necessary but not sufficient condition for
the 1RDM to belong to a triplet state with Sz = 0. As a
result, contrary to the fully polarized states, enforcing a
4-fold degeneracy on the occupation numbers might still
yield a singlet state rather than the Sz = 0 triplet state.
However, this is not the most general singlet state. One
can also construct a singlet as

|S = 0, Sz = 0〉 = c1|1↓1↑〉+ c2|2↓2↑〉+ · · · (14)

which leads to occupation numbers that are doubly de-
generate only. The double degeneracy in the occupation
numbers of the singlet 1RDM and the spatial part of
the triplet 1RDM were derived from symmetry consid-
erations of the corresponding wave functions by Löwdin
and Shull [47].
Running a RDMFT calculation with N↑ = N↓ = 1

without enforcing extra constraints we typically find the
double degeneracy of the occupations that corresponds
to the general singlet configuration, Eq. (14). This is
true not only for approximate functionals but also for
the exact one which is known for N = 2 [47]. This is not

surprising since the occupation numbers have more vari-
ational freedom than for the states (11) and (13) where a
4-fold degeneracy is required. Even a linear combination
of the general singlet state (14) and the triplet state (11)
yields some occupation numbers which are 4-fold degen-
erate. For example, the state

c1|1↓1↑〉+ c2
(

|2↓3↑〉+ |2↑3↓〉
)

, (15)

where the first part is a singlet state while the second
one is a Sz = 0 triplet state, corresponds to occupation
numbers

n1↑ = n1↓ = |c1|2, (16)

n2↑ = n2↓ = n3↑ = n3↓ = |c2|2. (17)

In other words, the occupation numbers coming from the
triplet part are again 4-fold degenerate. Note that due
to the fact that we are expanding in natural orbitals,
an orbital from the singlet part of Eq. (15) cannot be
used again in the triplet part since this would introduce
determinants which are single excitations of each other.

Energetically, unless the Hamiltonian contains a mag-
netic field or any other spin-specific terms, the two states
(9) and (11) are degenerate. Hence, for calculating the
triplet energy it should be irrelevant which state is calcu-
lated. However, many RDMFT functionals do not satisfy
this degeneracy. An exception is the Müller functional
for which one can show that the states (9) and (11) have
the same energy (see Appendix A). In those cases where
the degeneracy is broken, one can calculate the Sz = 0
triplet state by enforcing the 4-fold degeneracy of the oc-
cupation numbers. This prevents the minimization from
finding the general singlet state (14) which is lower in
energy. The lowest singlet state with 4-fold degeneracy
(13) has a higher energy than the corresponding triplet
state (11) [49].

For more than two electrons, one often encounters
cases where only the two outer electrons are important
for describing the correct physics. Within any multicon-
figuration wave function approach, this corresponds to
working with only two active electrons. For example, for
four electrons, one writes the wave function as

|S = 1, Sz = 1〉 = a1|1↑1↓2↑3↑〉+ a2|1↑1↓4↑5↑〉
+ a3|1↑1↓6↑7↑〉+ . . . (18)

which leads to the following occupation numbers

n1↑ = n1↓ = 1,

n2↑ = n3↑, n4↑ = n5↑,

n6↑ = n7↑, . . . .

(19)
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Acting with Ŝ− on the state of Eq. (18) we obtain

|S = 1, Sz = 0〉 = a1√
2

(

|1↑1↓2↑3↓〉+ |1↑1↓2↓3↑〉
)

+
a2√
2

(

|1↑1↓4↑5↓〉+ |1↑1↓4↓5↑〉
)

+
a3√
2

(

|1↑1↓6↑7↓〉+ |1↑1↓6↓7↑〉
)

+ . . . (20)

with occupation numbers

n1↑ = n1↓ = 1,

n2↑ = n2↓ = n3↑ = n3↓,

n4↑ = n4↓ = n5↑ = n5↓,

n6↑ = n6↓ = n7↑ = n7↓,

...
... . (21)

However, for the |S = 1, Sz = 1〉, the choice of forcing all
the inner orbitals to have occupation numbers equal to
one is very restrictive and leaves no variational freedom
in the spin-down channel. There are cases, as we see
later, where imposing the corresponding constraints in
an energy minimization leads to an overestimation of the
energy of the triplet state. As an alternative, we suggest
to assume that the inner orbitals are equally, but not
necessarily fully, occupied in the two spin channels, such
that these orbitals give a S = 0 contribution to the total
spin. Hence, we enforce the following conditions on the
occupation numbers for Sz = 1

n1↑ = n1↓,

n2↑ = n3↑, n4↑ = n5↑,

n6↑ = n7↑

...
... , (22)

and leave the occupation numbers of the down channel,
except for n1↓, unconstrained. The conditions for four
electrons of Eqs. (19), (21), and (22) can be extended to
any even number of electrons. One can then apply them
to calculate, for example, approximate total energies for
the lowest triplet state. We expect these total energies
to be correct for the lowest triplet state because the as-
sumption that this triplet state is built entirely by the
two outer electrons is a good approximation in this case.
We would like to point out that with the constraint (19),
the system is effectively reduced to a 2-particle system
with Sz = 1. Hence, the double degeneracy of the frac-
tional occupation numbers is a necessary and sufficient
condition to find expectation values S = 1 and Sz = 1.
Using instead the constraint (22), the calculated 1RDM
will not correspond exactly to the correct expectation
value of Ŝ2 due to the additional freedom especially in
the outer occupation numbers of the spin down channel.
Nevertheless, this constraint will improve the description
of a triplet state in general compared with no constraint
at all. The effect of the constraints in the description

of triplets can be tested for the Müller functional which
offers an ansatz for the full 2RDM and the expectation
value of Ŝ2 can be calculated.
We note that enforcing the pinning of some occupa-

tion numbers to one, which is generally an approxima-
tion, reduces dramatically the number of pure-state N -
representability conditions and makes it easier to apply
them in practical implementations. As the number of
electrons and the dimension of the Hilbert space increase,
the number of the exact generalized Pauli constraints ex-
plodes and their consideration in the minimization is ex-
tremely difficult. Pinning an occupation number means
that it has no influence in the question of pure-state or en-
semble N -representability. From Eqs. (18)-(21), we can
see that the orbitals which correspond to pinned occu-
pation numbers appear in every Slater determinant in
a pure state. For an ensemble, such an orbital would
appear in every Slater determinant of every term that
contributes to the ensemble. Consequently, for those sys-
tems where pinning the occupation numbers for all but
two electrons is a valid approximation, we could simply
consider the generalized Pauli constraints for two elec-
trons and for those occupation numbers which are not
pinned. For a 2-electron triplet with Sz = ±1 the double
degeneracy constraint (10) coincides with the generalized
Pauli constraint. For the triplet with Sz = 0, the 4-fold
degeneracy constraint (12) is stricter but fulfills the gen-
eralized Pauli constraints.
So far, we have discussed constraints on the triplet

states. In order to calculate the excitation energy from
a singlet ground state to the first excited triplet state,
we also need to calculate the energy of the singlet. Since
many approximations were derived aiming at the correct
description of singlet ground states, we expect to obtain
quantitatively correct results for the singlet ground-state
energies by just enforcing Sz = 0 despite the fact that
we cannot exclude that our density matrix might be con-
taminated by contributions from states with total spin
S larger than zero. Note that for systems with an even
number of electrons, a nondegenerate ground state and
a Hamiltonian which has time-reversal symmetry, by en-
forcing Sz = 0 setting the constraint nj↑ = nj↓, we also
satisfy the generalized Pauli constraints [32].
Let us point out that even when the generalized Pauli

constraints are satisfied this does not mean that the
1RDM that we have corresponds necessarily to a pure
state, it could also correspond to an ensemble. However,
by satisfying these constraints we exclude the case that a
given 1RDM corresponds to ensembles only and cannot
correspond to a pure state.

III. RESULTS

We now apply the constraints discussed in the last sec-
tion to the energy minimization in RDMFT calculations.
We employed three different approximations for the total
energy within RDMFT, namely, the Müller, the BBC3,
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and the Power functionals [8, 11, 17]. We first compare
the 1RDMs obtained from the constrained calculations to
those obtained without these constraints and the “exact”
1RDM from a MCSCF calculation. The inclusion of the
extra constraints on the occupation numbers adds only
an insignificant amount of computational cost since the
bottleneck of the RDMFT minimization is the optimiza-
tion of the natural orbitals. We refer to the calculations
without the constraints discussed in this work, related
to 〈Ŝ2〉, as minimizations without constraint. Despite
this name, we still impose the constraint (6) which fixes

the expectation value of Ŝz and the correct number of
electrons in all our calculations.
As test systems, we considered helium, H2, Be, BH,

H2O and Mg for which, due to their small size, the MC-
SCF calculations are feasible. For helium, H2, Be, and
BH, we used the cc-pVTZ basis set, and the energy mini-
mization for all methods was performed using 10, 14, 35,
and 24 natural orbitals, respectively. For H2O and Mg
we used the cc-pVDZ with 20 and 17 natural orbitals,
respectively. In all cases, we used less natural orbitals
than the basis sets would allow, since, for small systems,
we obtained very small occupation numbers which cause
numerical problems in the convergence of the MCSCF
calculations. In addition, for larger systems the demands
in memory become prohibitive for the MCSCF calcula-
tion because we want to compare to the exact 1RDM
and, therefore, cannot pin occupations to one. The MC-
SCF triplet as well as the one- and 2-electron integral
calculations were performed using the Gamess US code
[50]. The RDMFT calculations were performed with the
HIPPO computer code [51].

A. Quality of 1-RDMs Using 〈Ŝ2〉 Constraints

As discussed in the previous section, a 2-electron wave
function with Sz = 1 expressed in terms of natural or-
bitals has the form (9), which results in the restrictions
(10). Thus, we tested if these exact conditions are sat-
isfied by the functionals considered here, for the helium
atom and the hydrogen molecule at different internuclear
separations by calculating the ground state for N↑ = 2
and N↓ = 0. We find that the conditions are violated
in all cases, i.e.. the occupations are not pairwise equal
but show differences of up to 0.09 within the pairs. The
conditions are, as expected, satisfied by the MCSCF cal-
culations and, as can be shown analytically, by the ex-
act 2-electron RDMFT functional (LSH) [47]. We then
perform the RDMFT calculations using Eq. (10) as an
additional constraint during the optimization of the oc-
cupation numbers.
We also perform RDMFT minimizations for larger sys-

tems with an even number of particles with the approx-
imate constraint (19), where we assume that the triplet
is formed from the two outermost electrons and the in-
ner orbitals have occupations pinned to one and with the
constraint (22), where we allow the inner occupations to

be less than one. We compare the occupation numbers
from these RDMFT minimizations, with and without en-
forcing the constraints, with occupation numbers from
“exact” MCSCF calculations to check whether the con-
straints help to get a density matrix closer to the exact
one.
As the constraints concern the occupation numbers,

an important criterion for the quality of the calculated
1RDMs is the square difference

∆ =
1

N

M
∑

j=1





∑

σ=↑,↓

(

nRDMFT
jσ − nMCSCF

jσ

)





2

(23)

of the obtained RDMFT occupations from the exact ones,
which we show in Table I. In Eq. (23), M denotes the
number of natural orbitals included in the calculation
and N the total number of electrons. We show results
for ∆ without imposing the additional constraints (w/o)
and from calculations with the spin constraint (10) for
two electrons (cons.) in the top half of the Table. For
more than two electrons, we impose the constraints of
Eq. (19) (cons. pin.) and (22) (cons.), and the results
are shown in the bottom half. For the 2-electron systems,
imposing the exact constraint (10), in calculations, with
the approximate 1RDM functionals we adopted, results
in optimal occupation numbers closer to the exact ones.
Moreover, for more than two electrons, both approximate
constraints, Eqs. (19) and (22), improve significantly the
1RDM as the occupation numbers are much closer to the
exact ones than the occupations from the energy mini-
mization without additional constraints. We should em-
phasize that, although the constraint (22) is expected to

lead to a larger deviation from the correct 〈Ŝ2〉 than the
constraint (19), it leads to occupations closer to the exact
ones.
Correlations in RDMFT are manifested by fractional

occupation numbers. A measure for the correlation is the
total electronic charge of “weakly” occupied orbitals, i.e.,
those with occupations smaller than 1/2, defined as

w =
∑

njσ<
1

2

njσ. (24)

We again compare to the results from a MCSCF calcu-
lation using

∆w =
∣

∣w − wMCSCF
∣

∣ (25)

which is then averaged over all the systems considered.
A known deficiency of many approximate functionals,
which can also be seen in Table II, is that they typically
overestimate w. For 2-electron systems, imposing the ex-
act constraint (10) for S = 1 and Sz = 1, lowers w to
values closer to the exact ones. For systems with more
than two electrons, both the constraints (19) and (22)
reduce w to values closer to the “exact” MCSCF result.
Results with the constraint (22), i.e., without pinning the
inner occupation numbers, are the closest to MCSCF.
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Müller BBC3 Power

w/o cons. w/o cons. w/o cons.

He 0.001505 0.000063 0.000108 0.000014 0.000109 0.000005

H2 (1.4 au) 0.019184 0.000855 0.000743 0.000006 0.002157 0.000060

H2 (2.5 au) 0.004083 0.000853 0.000312 0.000064 0.000377 0.000063

H2 (5.0 au) 0.001690 0.000808 0.000294 0.000089 0.000161 0.000075

average ∆ 0.00662 0.00064 0.00036 0.00004 0.00070 0.00005

w/o cons. pin. cons. w/o cons. pin cons. w/o cons. pin. cons.

Be 0.207842 0.090246 0.068044 0.001813 0.000302 0.000166 0.164014 0.022162 0.010776

BH 0.081441 0.023143 0.0091545 0.028337 0.000731 0.000274 0.078891 0.004478 0.001066

H2O 0.034401 0.003178 0.0077090 0.001668 0.000476 0.000152 0.011851 0.000708 0.000877

Mg 0.053385 0.034422 0.0162205 0.011861 0.001604 0.000128 0.053019 0.003068 0.003617

average ∆ 0.09427 0.03775 0.02528 0.01092 0.00078 0.00018 0.07694 0.00760 0.00408

TABLE I. For the Sz = 1 State, deviation of the calculated occupation numbers from the exact. For two-electron
systems (top): Deviation ∆ (see Eq. (23)) of the occupation numbers from the exact occupations (MCSCF) calculated with
different RDMFT functionals, without (w/o) enforcing the additional exact spin constraint (10) and with the constraint (cons.).
For systems with more than two electrons (bottom): The same deviation without any constraint (w/o), with the constraint
(19) (cons. pin.), or using Eq. (22) (cons.). For each system we used the same number of natural orbitals and the same basis
set for the RDMFT and MCSCF calculations.

Müller BBC3 Power MCSCF

w/o cons. w/o cons. w/o cons.

He 4.9·10−2 1.3·10−2 1.3·10−2 6.3·10−3 1.3·10−2 3.8·10−3 1.9·10−4

H2 (1.4 au) 1.0·10−1 5.5·10−2 3.8·10−2 1.7·10−2 6.1·10−2 1.9·10−2 5.7·10−3

H2 (2.5 au) 8.5·10−2 5.4·10−2 2.5·10−2 1.7·10−2 2.7·10−2 1.7·10−2 3.0·10−3

H2 (5.0 au) 5.4·10−2 5.1·10−2 2.3·10−2 1.7·10−2 1.7·10−2 1.5·10−4 2.5·10−4

average ∆w 7.0·10−2 4.1·10−2 2.3·10−2 1.2·10−2 2.7·10−2 1.1·10−2 -

w/o cons. pin. cons. w/0 cons. pin cons. w/o cons. pin. cons.

Be 6.8·10−1 6.8·10−1 5.9·10−1 8.2·10−2 5.5·10−2 4.3·10−2 1.0 3.3·10−1 2.3·10−1 1.5·10−2

BH 1.1 4.5·10−1 3.8·10−1 3.4·10−1 7.2·10−2 5.5·10−2 1.0 2.0·10−1 1.3·10−1 7.7·10−2

H2O 4.1·10−1 2.3·10−1 2.0·10−1 1.1·10−1 8.6·10−2 6.7·10−2 2.3·10−1 1.1·10−1 7.9·10−2 8.1·10−2

Mg 1.0 7.1·10−1 5.0·10−1 3.0·10−1 1.6·10−1 5.6·10−2 1.0 2.3·10−1 2.3·10−1 1.3·10−2

average ∆w 7.5·10−1 4.7·10−1 3.3·10−1 1.6·10−1 5.0·10−2 1.5·10−2 7.7·10−1 7.2·10−1 1.2·10−1 -

TABLE II. Same as Table I but for the sum of the occupation numbers of the weakly occupied orbitals, w (see
Eq. (24)). Here ∆w denotes the absolute deviation from the “exact” MCSCF results which is then averaged over all systems
in each part of the table.

So far, we have assessed the quality of the optimal
1RDMs from our calculations by comparing them to the
results from MCSCF calculations. However, the goal was
to calculate 1RDMs with a specific expectation value for
the total spin which requires a functional of 〈Ŝ2〉 in terms
of the 1RDM. For the Müller functional, the energy func-
tional was derived using an ansatz for the second-order
reduced density matrix Γ(2) in terms of the 1RDM [8].

Using this ansatz for Γ(2) we can calculate 〈Ŝ2〉 from Eq.

(1). The resulting expression reads

〈Ŝ2〉Müller =
(N↑ −N↓)

2

4
+ (N↑ +N↓)

−1

2

∞
∑

j=1

∑

σσ′=↑,↓

√

(njσ njσ′ ). (26)

The correct expectation value of the triplet state is
〈Ŝ2〉 = 2. Thus, we calculate the difference

∆S
2 = 2− 〈Ŝ2〉Müller (27)

to examine whether imposing the constraint (22) im-

proves 〈Ŝ2〉 or not. The results we obtained are shown
in Fig. 1. It is apparent that in all cases the considered



8

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

∆
S

2
xx
xx
xx

Be BH H
2
O Mg

Without constraint

With constraint

FIG. 1. Difference between 〈Ŝ2〉 calculated from Eq. (26) with

the Müller functional and the exact 〈Ŝ2〉 = 2 for a triplet

state. The triplet is calculated without any constraints for Ŝ2

(green shaded) and with the constraint Eq. (22) (red full).

approximate constraint improves the values of 〈Ŝ2〉 ob-
tained with Eq. (26). Note that with the constraint (19),
where we pin the inner occupation numbers to one, and
for 2-electron systems, where Eq. (10) is the exact con-
straint, ∆S

2 is zero and therefore not included in Fig.
1.
Let us point out that the Müller ansatz for Γ(2) is not

exact, therefore, the calculated value 〈Ŝ2〉Müller is also not
exact. However, the value is consistent with the energy
functional which was used in the minimization procedure.
Unfortunately, for the other approximations that we em-
ployed, the functionals for 〈Ŝ2〉 that are consistent with
the energy functionals are not available.

B. Energy of Excited Triplet States

In this subsection, we discuss the effect of imposing
the constraints for 〈Ŝ2〉 on the total energies of excited
triplet states. By imposing the constraint (10) we calcu-
late the lowest lying triplet energy of 2-electron systems
with Sz = 1 and compare it with the energy that we get
using the constraint (12) for the triplet with Sz = 0. As
we show in Appendix A, the Müller functional respects
the degeneracy between the Sz = 0 triplet state and the
fully polarized triplet states. This is not the case for the
other approximations we employed in this work.
In Fig. 2, we plot the energy difference between the

first excited triplet and the ground-state singlet of the
H2 molecule, i.e., the first singlet to triplet excitation
energy, as a function of the internuclear distance, using
the BBC3 functional. The unconstrained calculation for
Sz = 1 agrees only qualitatively with the MCSCF results.
Enforcing the constraint (10) for S = 1, Sz = 1 slightly
improves the excitation energies. The best results are ob-
tained by enforcing the constraint (12) for S = 1, Sz = 0.
The difference in the two constrained calculations arises
from the fact that the degeneracy of S = 1, Sz = 1 and
S = 1, Sz = 0 is broken by the functional, although it
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FIG. 2. Excitation energy, ground-state singlet to the lowest
triplet, of the hydrogen molecule as a function of the inter-
nuclear distance, using the BBC3 functional. The triplet is
calculated either by just imposing Sz = 1 with no constraint
for 〈Ŝ2〉 or by additionally imposing the constraint for S = 1,
Sz = 1 (Eq. (10)) or for S = 1, Sz = 0 (Eq. (12)).

should not since the Hamiltonian is spin-independent. In
Table III (top), we show the lowest triplet total energies
of the helium atom and the hydrogen molecule at two
different interatomic distances, the equilibrium distance,
R=1.4 au and a larger one, R=2.5 au, for all functionals
that we used. For the Müller functional, in all systems
considered, the constraints for 〈Ŝ2〉 improve the corre-
sponding energies compared to the unconstrained Sz = 1
calculation. For the BBC3 functional, the S = 1, Sz = 1
and S = 1, Sz = 0 constraints give different results.
Although both improve the triplet energies the second
performs better. The Power functional also breaks the
energy degeneracy but only the S = 1, Sz = 1 con-
straint improves the total energies of the triplets while
the S = 1, Sz = 0 deteriorates them. As a measure for
the quality of the functional in calculating triplet ener-
gies we include the average, absolute, relative deviation
from the MCSCF energies, i.e.,

δ =
1

Nsys

∑

i

|Ei − EMCSCF
i |

|Ei|
, (28)

where Ei is the RDMFT energy of system i, EMCSCF
i

the corresponding MCSCF energy and Nsys the number
of cases. This quantity is included in Table III. In the
same Table, we also include δex, defined similarly to δ in
Eq. (28), for the energy differences between the ground-
state singlets and the first excited triplet states. In the
same Table, for completeness, we also include the total
energies of the ground-state singlets. As one can see,
the errors for the Müller and the BBC3 functionals in
calculating these excitations are mainly due to the bad
description of the triplets, as the total energies of the
singlets are very accurate. In all cases, the conditions
for the triplet improve the singlet-to-lowest-triplet exci-
tation energies although with the Power functional and
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the S = 1, Sz = 0 constraint this is only achieved due to
a cancelation of errors.
In Table III (bottom), we include results for systems

with more than two electrons. These systems are chosen
because one can assume that their first excited triplet
is formed by the two outermost electrons only. For the
three functionals we considered, and in the first line for
each system, we give the lowest triplet energy which is
calculated using the constraint (19), i.e., by pinning the
occupations of all core orbitals to one and letting only
the outer orbitals for the majority spin to be fractionally
occupied with two electrons. This guarantees that the
core electrons do not contribute to the total spin. We
loosened the constraint for the inner occupations by en-
forcing only the constraint (22). The results are given
in the second line for each system. As shown in Fig. 1,
for the Müller functional, this leads to a deviation from
the correct 〈Ŝ2〉 but is still closer to the exact 〈Ŝ2〉 than
imposing no additional restriction.
On average the total energies of the first excited triplet

states are improved imposing the constraints considered
here, with the exception of the Müller functional with the
S = 1 and Sz = 0 constraint. However, the singlet-to-
first-triplet excitation energies worsen in many cases due
to a cancellation of errors in favor of the unconstrained
calculations with some functionals.
The small number of systems that we considered, does

not allow us to draw a decisive conclusion on the effect
of the constraints on the excitation energies. The excita-
tion energies (with or without the additional constraints)
show a large error compared to those from MCSCF, for
all the functionals we employed. This is, at least partially,
due to the fact that functionals in RDMFT are typically
devised and tuned to reproduce the energies of ground-
state singlets. They even fail, in some cases, to identify
that there is a triplet with lower energy. For example
the Müller functional yields a singlet as the ground state
for the oxygen and carbon atoms instead of the correct
triplet states.
As we discussed before, with the restriction (22) we

cannot guarantee that we get a triplet as there exists
a singlet with the same occupations. However, if the
triplet is lower in energy than the corresponding singlet
then the minimization will find it. The advantage of this
restriction is that it can be applied for functionals that
are devised to treat systems with the same number of up
and down electrons.

IV. CONCLUSION

We have considered necessary conditions for the one-
body-reduced density matrix of a system of two electrons
to correspond to a triplet state. There are separate con-
ditions for the fully polarized triplet states Sz = ±1 and
for the Sz = 0 state. In a spin-restricted description,
i.e., assuming the same spatial dependence of the natu-
ral orbitals in the two spin channels, the conditions for

Sz = ±1 restrict the occupation numbers to be doubly
degenerate. For Sz = 0, on the other hand, a 4-fold
degeneracy of the occupation numbers was found.

We first tested if the conditions are satisfied for the
fully polarized, Sz = ±1, triplet states of prototype two
electron systems, namely, the helium atom and the H2

molecule, using typical approximate RDMFT functionals
and found that they are violated significantly. They are,
however, satisfied by the exact functional for two elec-
trons, as can be shown analytically, and in MCSCF cal-
culations. Since the conditions only affect the degeneracy
of the occupation numbers they can easily be enforced in
RDMFT calculations as additional constraints in the en-
ergy minimization. Thus, we applied the conditions for
Sz = 1 to calculate the lowest excited triplet states of
the aforementioned 2-electron systems. We found that,
with the employed approximations, the optimal occupa-
tion numbers improve significantly compared to “exact”
MCSCF results. We also calculated the total energies of
the lowest triplet states when the conditions for Sz = 1
and Sz = 0 are applied and we found, in most of cases,
an improvement of these energies.

We also evaluated the idea of applying the aforemen-
tioned conditions, which are exact for two electron sys-
tems, to systems with more than two electrons. For
Sz = ±1, we employed two different approximate con-
straints: In the first, all electrons from the minority spin
channel and all but two electrons from the majority spin
channel occupy pinned natural orbitals, leaving only two
electrons from the majority spin channel to lead to frac-
tional occupation numbers. In the second, spin-up and
spin-down core natural orbitals have equal occupancies
which are not necessarily pinned to one, and the 2-fold
degeneracy is assumed only for the weakly occupied nat-
ural orbitals which accommodate the two additional elec-
trons of the majority spin. We evaluated the approximate
constraints that we propose by testing their effect when
imposed as additional constraints in RDMFT minimiza-
tions of some atoms and molecules and found that, in all
cases, we get occupation numbers closer to the exact ones
than without imposing them. For Sz = 0 triplets, the ex-
tension we considered assumes that core natural orbitals
accommodating all but two electrons form a singlet state
and are pinned, while the rest of the orbitals, which ac-
commodate the two remaining electrons follow the 4-fold
degeneracy as in the case of only two electrons. Same
as for the 2-electron systems, we applied the constraints
both for Sz = ±1 and Sz = 0 to RDMFT minimizations
with different functionals to calculate first excited triplet
states. On average the constraints considered here im-
proved the energy of the first excited triplet state, with
the exception of the Müller functional with the S = 1,
Sz = 1 constraints. This improvement, however, in both
cases of two and more than two electrons, does not con-
cern necessarily the corresponding singlet-triplet excita-
tion energies. We found that for the excitation energies,
error cancellations are in favor of unconstrained calcu-
lations, and the additional constraints might deteriorate
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Müller BBC3 Power MCSCF

He S=1 Sz = 1 w/o -1.9809 -1.9623 -1.9475 -1.9364

S=1 Sz = 1 cons -1.9645 -1.9565 -1.9428

S=1 Sz = 0 cons -1.9645 -1.9515 -1.8501

S=0 -2.9062 -2.8971 -2.9022 -2.8989

H2 1.4 au S=1 Sz = 1 w/o -0.8489 -0.8131 -0.7972 -0.7794

S=1 Sz = 1 cons -0.8226 -0.8017 -0.7881

S=1 Sz = 0 cons -0.8226 -0.7824 -0.7201

S=0 -1.1870 -1.1701 -1.1464 -1.1716

H2 2.5 au S=1 Sz = 1 w/o -0.9968 -0.9726 -0.9575 -0.9445

S=1 Sz = 1 cons -0.9873 -0.9684 -0.9544

S=1 Sz = 0 cons -0.9873 -0.9534 -0.8857

S=0 -1.1185 -1.0936 -1.0614 -1.0915

δ S=1 Sz = 1 w/o 0.056 0.029 0.014

S=1 Sz = 1 cons 0.038 0.021 0.008

S=1 Sz = 0 cons 0.038 0.007 0.061

S=0 0.013 0.001 0.017

δex S=1 Sz = 1 w/o 0.12 0.10 0.15

S=1 Sz = 1 cons 0.07 0.08 0.13

S=1 Sz = 0 cons 0.07 0.03 0.11

Be S=1 Sz = 1 w/o -14.6966 -14.5685 -14.5853 -14.5327

S=1 Sz = 1 cons. pin. -14.6513 -14.5544 -14.5514

S=1 Sz = 1 cons. -14.6548 -14.5582 -14.5530

S=1 Sz = 0 cons. -14.6958 -14.5524 -14.5225

S=0 -14.7471 -14.6491 -14.6170 -14.6331

BH S=1 Sz = 1 w/o -25.3748 -25.2098 -25.2058 -25.1901

S=1 Sz = 1 cons. pin. -25.2710 -25.1811 -25.1720

S=1 Sz = 1 cons. -25.3109 -25.1997 -25.1617

S=1 Sz = 0 cons. -24.4076 -25.1793 -25.1824

S=0 -25.4504 -25.2512 -25.2350 -25.2385

H2O S=1 Sz = 1 w/o -76.1195 -75.9048 -75.8544 -75.8749

S=1 Sz = 1 cons. pin. -75.8729 -75.8061 -75.7558

S=1 Sz = 1 cons. -76.0106 -75.8704 -75.8015

S=1 Sz = 0 cons. -76.1468 -75.8616 -75.8586

S=0 -76.2046 -76.3443 -76.1097 -76.1732

Mg S=1 Sz = 1 w/o -199.6822 -199.5835 -199.6077 -199.5500

S=1 Sz = 1 cons. pin. -199.6822 -199.5835 -199.6077

S=1 Sz = 1 cons. -199.6336 -199.5606 -199.5711

S=1 Sz = 0 cons. -199.6436 -199.5771 -199.5776

S=0 -199.7506 -199.6603 -199.6553 -199.6378

δ S=1 Sz = 1 w/o 0.0055 0.0010 0.0012

S=1 Sz = 1 cons. pin 0.0029 0.0008 0.0010

S=1 Sz = 1 cons. 0.0038 0.0006 0.0009

S=1 Sz = 0 cons. 0.0115 0.0006 0.0004

S=0 0.0043 0.0010 0.0005

δex S=1 Sz = 1 w/o 0.38 0.12 0.42

S=1 Sz = 1 cons. pin 0.92 0.24 0.27

S=1 Sz = 1 cons. 0.57 0.08 0.20

S=1 Sz = 0 cons. 0.34 0.17 0.09

TABLE III. Energies of Lowest Triplet States and Singlet Ground States (in Ha) for Different RDMFT Function-

als Calculated with or without Additional Constraints for 〈Ŝ2〉. For 2-electron systems (top), the triplet is calculated
either by imposing only Sz = 1 without additional constraints (first line for each system), or by imposing the constraint (10)
for S = 1, Sz = 1 (second line for each system), or the constraint (12) for S = 1, Sz = 0 (third line). Energies for the ground
state singlet are also included (fourth line). For systems with more than two electrons (bottom), the triplet is calculated with
Sz = 1 without any additional spin constraint (first line), with Sz = 1 by imposing the constraint (19) i.e., pinning the inner
occupations to one (second line), and with Sz = 1 by imposing the constraint (22) (third line). For Sz = 0, we impose the
constraint (21) (forth line). The exact energies obtained with MCSCF using the same basis set and the same number of active
orbitals are also given for comparison. The average absolute relative deviations from MCSCF (Eq. (28)), for the total energies,
δ, and the singlet-triplet excitation energies, δex, are also included.
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the agreement of these energies with the exact. This
effect is partly due to the fact that 1RDM functionals
might not treat singlet and triplet states at the same level
of accuracy. For the majority of present-day approxima-
tions, the main focus has been the accurate description
of singlet states and there is no guarantee of the qual-
ity of their results when extended to triplet states. For
example, most functionals break the degeneracy between
the fully polarized and the Sz = 0 triplet states.

The present work is a significant step in the description
of high-spin states using reduced density matrix func-
tional theory. Our findings motivate the development
of approximations which could offer a better description
for triplet states by following the proposed recipe. A
benchmark for these approximations would be the pre-
diction of the triplet ground states of atomic and molec-
ular systems. Finally, with the proposed methodology,
it becomes feasible to access the Sz = 0 triplet state in
RDMFT by applying the appropriate necessary condi-
tions. Consequently, for any new functional one could
test the degeneracy between the fully polarized and the
Sz = 0 triplet states. In the future, with the improve-
ment of available approximations, it will be possible for
RDMFT to study cases of broken degeneracy of the
triplet states, e.g. when magnetic fields are applied.
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Appendix A: Degeneracies in the Müller Functional

In this Appendix, we show that for 2-electron systems,
the Müller functional respects the energy degeneracy of
the Sz = 1 and Sz = 0 triplet states. The states (9) and
(11) have the same natural orbitals but differ in their
occupation. If the occupation numbers of the Sz = 1
state are denoted by nj↑ (the down channel is empty)
then the occupation numbers for the Sz = 0 state, ñjσ,
are given by

ñj↑ = ñj↓ = nj↑/2. (A1)

Starting from the solution of the fully polarized state, we
know that the total energy is given by

E =

∞
∑

j=1

nj↑

∫

d3rϕ∗
j (r)

(

−∇2

2
+ vext(r)

)

ϕj(r)

+
1

2

∞
∑

j,k=1

nj↑nk↑Jjk − 1

2

∞
∑

j,k=1

√
nj↑nk↑Kjk (A2)

with

Jjk =

∫∫

d3rd3r′
|ϕj(r)|2|ϕk(r

′)|2
|r− r′| , (A3)

Kjk =

∫∫

d3rd3r′
ϕ∗
j (r)ϕ

∗
k(r

′)ϕk(r)ϕj(r
′)

|r− r′| . (A4)

The derivative of the total energy with respect to the
occupation number nj↑ reads as

∂E

∂nj↑

=

∫

d3rϕ∗
j (r)

(

−∇2

2
+ vext(r)

)

ϕj(r)

+

∞
∑

k=1

nk↑Jjk −
∞
∑

k=1

√
nk↑

2
√
nj↑

Kjk. (A5)

As we are at the solution point, the derivatives with re-
spect to all fractional occupation numbers satisfy

∂E

∂nj↑

= µ, (A6)

where µ denotes the chemical potential of the system.
Using the occupation numbers ñjσ of the 〈Ŝz〉 = 0

state instead, the total energy is given as

E =
∑

σ

∞
∑

j=1

ñjσ

∫

d3rϕ∗
j (r)

(

−∇2

2
+ vext(r)

)

ϕj(r)

+
1

2

∑

σσ′

∞
∑

j,k=1

ñjσñkσ′Jjk

− 1

2

∑

σ

∞
∑

j,k=1

√

ñjσñkσKjk. (A7)

Making the spin sums explicit this can be rewritten as

E =

∞
∑

j=1

(ñj↑ + ñj↓)

∫

d3rϕ∗
j (r)

(

−∇2

2
+ vext(r)

)

ϕj(r)

+
1

2

∞
∑

j,k=1

(ñj↑ + ñj↓) (ñk↑ + ñk↓) Jjk

− 1

2

∞
∑

j,k=1

(

√

ñj↑ñk↑ +
√

ñj↓ñk↓

)

Kjk (A8)

which, using Eq. (A1) is identical to the energy of the

〈Ŝz〉 = 1 state, Eq. (A2). However, we still need to show
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that this energy is also an extremum. For the derivative
with respect to the occupation numbers we obtain

∂E

∂ñjσ

=

∫

d3rϕ∗
j (r)

(

−∇2

2
+ vext(r)

)

ϕj(r)

+
∑

σ′

∞
∑

k=1

ñkσ′Jjk −
∞
∑

k=1

√
ñkσ

2
√

ñjσ

Kjk. (A9)

Again making the spin sum explicit in the second term
and using ñkσ/ñjσ = nk↑/nj↑ we find that the derivative
is the same as in Eq. (A5). Hence, if the occupation
numbers nj↑ minimize the total energy for the triplet
Sz = 1 state then the occupation numbers ñjσ defined in
Eq. (A1) form the minimum for the triplet Sz = 0 state.
We note that this derivation crucially depends on the

square root dependence in the exchange term. For a gen-
eral power α, i.e., (njσnkσ)

α in the exchange energy, one
finds factors of 2/22α and 1/22α−1 in the exchange en-
ergy and its derivative, respectively, when comparing the

terms for nj↑ and ñjσ. In other words, the terms are only
the same for α = 1/2.

We also emphasize that the degeneracy holds only if
the two sets of orbitals are identical. Since the two states
(9) and (11) are connected by Ŝ±, which only acts on the
spin degrees of freedom, this is satisfied. However, if one
determines the orbitals from an energy minimization it
can happen that one finds different minima for the or-
bitals in the two cases resulting in a broken degeneracy.
In the systems that we have tested, we found that the de-
generacy is satisfied with an accuracy of 6 decimal digits
which corresponds to the convergence of the overall cal-
culation.

As we have seen, for the Müller functional the sums are
the same because all the terms in the sums are identical.
For the other functionals considered here, there might be
specific cases of sets of occupation numbers that triplet
states are degenerate, i.e., the sums are equal, however
this degeneracy does not hold in general.
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