000810284 001__ 810284
000810284 005__ 20240610121134.0
000810284 0247_ $$2doi$$a10.1103/PhysRevB.93.195444
000810284 0247_ $$2ISSN$$a0163-1829
000810284 0247_ $$2ISSN$$a0556-2805
000810284 0247_ $$2ISSN$$a1095-3795
000810284 0247_ $$2ISSN$$a1098-0121
000810284 0247_ $$2ISSN$$a1550-235X
000810284 0247_ $$2ISSN$$a2469-9969
000810284 0247_ $$2Handle$$a2128/11474
000810284 0247_ $$2WOS$$aWOS:000376920400016
000810284 037__ $$aFZJ-2016-03139
000810284 082__ $$a530
000810284 1001_ $$0P:(DE-Juel1)143949$$aSchnedler, M.$$b0$$ufzj
000810284 245__ $$aImportance of quantum correction for the quantitative simulation of photoexcited scanning tunneling spectra of semiconductor surfaces
000810284 260__ $$aCollege Park, Md.$$bAPS$$c2016
000810284 3367_ $$2DRIVER$$aarticle
000810284 3367_ $$2DataCite$$aOutput Types/Journal article
000810284 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1466143944_27117
000810284 3367_ $$2BibTeX$$aARTICLE
000810284 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810284 3367_ $$00$$2EndNote$$aJournal Article
000810284 520__ $$aPhotoexcited scanning tunneling spectroscopy is a promising technique for the determination of carrier concentrations, surface photovoltages, and potentials of semiconductors with atomic spatial resolution. However, extraction of the desired quantities requires computation of the electrostatic potential induced by the proximity of the tip and the tunnel current. This calculation is based on an accurate solution of the Poisson as well as the continuity equations for the tip-vacuum-semiconductor system. For this purpose, the carrier current densities are modeled by classical drift and diffusion equations. However, for small tip radii and highly doped materials, the drift and diffusion transport model significantly overestimates a semiconductor's carrier concentration near the surface, making the quantification of physical properties impossible. In this paper, we apply quantum correction to the drift and diffusion model, in order to account for the so-called quantum compressibility, i.e., reduced compressibility of the carrier gas due to the Pauli principle, in the region of the tip-induced band bending. We compare carrier concentrations, potentials, and tunnel currents derived with and without quantum correction for GaN(101¯0) and GaAs(110) surfaces to demonstrate its necessity.
000810284 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000810284 542__ $$2Crossref$$i2016-05-31$$uhttp://link.aps.org/licenses/aps-default-license
000810284 588__ $$aDataset connected to CrossRef
000810284 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b1$$ufzj
000810284 7001_ $$0P:(DE-Juel1)130627$$aEbert, Ph.$$b2$$ufzj
000810284 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.93.195444$$bAmerican Physical Society (APS)$$d2016-05-31$$n19$$p195444$$tPhysical Review B$$v93$$x2469-9950$$y2016
000810284 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.93.195444$$gVol. 93, no. 19, p. 195444$$n19$$p195444$$tPhysical review / B$$v93$$x2469-9950$$y2016
000810284 8564_ $$uhttps://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.pdf$$yOpenAccess
000810284 8564_ $$uhttps://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.gif?subformat=icon$$xicon$$yOpenAccess
000810284 8564_ $$uhttps://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810284 8564_ $$uhttps://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810284 8564_ $$uhttps://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810284 8564_ $$uhttps://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810284 909CO $$ooai:juser.fz-juelich.de:810284$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000810284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b0$$kFZJ
000810284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b1$$kFZJ
000810284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b2$$kFZJ
000810284 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000810284 9141_ $$y2016
000810284 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810284 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000810284 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810284 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810284 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810284 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810284 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810284 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810284 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2014
000810284 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810284 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810284 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810284 920__ $$lyes
000810284 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000810284 9801_ $$aFullTexts
000810284 980__ $$ajournal
000810284 980__ $$aVDB
000810284 980__ $$aUNRESTRICTED
000810284 980__ $$aI:(DE-Juel1)PGI-5-20110106
000810284 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.64.1051
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.456
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(97)00480-7
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.R2165
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1382869
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.026802
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2888733
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.47.6117
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2009.08.002
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.235305
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.1491535
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.195318
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.165327
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.035310
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3177329
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.205309
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/T-ED.1969.16566
000810284 999C5 $$1S. Selberherr$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-7091-8752-4$$y1984
000810284 999C5 $$1F. Schwabl$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-662-04702-6$$y2002
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10825-011-0356-9
000810284 999C5 $$1N. L. Rowsey$$2Crossref$$oN. L. Rowsey CSRI Summer Proceedings 2009 2010$$tCSRI Summer Proceedings 2009$$y2010
000810284 999C5 $$1A. Jüngel$$2Crossref$$oA. Jüngel Quasi-Hydrodynamic Semiconductor Equations 2011$$tQuasi-Hydrodynamic Semiconductor Equations$$y2011
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcp.2004.10.029
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.35.7959
000810284 999C5 $$1J. F. Creemer$$2Crossref$$oJ. F. Creemer Ultra-thin Chip Technology and Applications 2011$$tUltra-thin Chip Technology and Applications$$y2011
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.89697
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.14.556
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.30.4828
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201306281
000810284 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.075320