001     810284
005     20240610121134.0
024 7 _ |a 10.1103/PhysRevB.93.195444
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/11474
|2 Handle
024 7 _ |a WOS:000376920400016
|2 WOS
037 _ _ |a FZJ-2016-03139
082 _ _ |a 530
100 1 _ |a Schnedler, M.
|0 P:(DE-Juel1)143949
|b 0
|u fzj
245 _ _ |a Importance of quantum correction for the quantitative simulation of photoexcited scanning tunneling spectra of semiconductor surfaces
260 _ _ |a College Park, Md.
|c 2016
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1466143944_27117
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photoexcited scanning tunneling spectroscopy is a promising technique for the determination of carrier concentrations, surface photovoltages, and potentials of semiconductors with atomic spatial resolution. However, extraction of the desired quantities requires computation of the electrostatic potential induced by the proximity of the tip and the tunnel current. This calculation is based on an accurate solution of the Poisson as well as the continuity equations for the tip-vacuum-semiconductor system. For this purpose, the carrier current densities are modeled by classical drift and diffusion equations. However, for small tip radii and highly doped materials, the drift and diffusion transport model significantly overestimates a semiconductor's carrier concentration near the surface, making the quantification of physical properties impossible. In this paper, we apply quantum correction to the drift and diffusion model, in order to account for the so-called quantum compressibility, i.e., reduced compressibility of the carrier gas due to the Pauli principle, in the region of the tip-induced band bending. We compare carrier concentrations, potentials, and tunnel currents derived with and without quantum correction for GaN(101¯0) and GaAs(110) surfaces to demonstrate its necessity.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
542 _ _ |i 2016-05-31
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 1
|u fzj
700 1 _ |a Ebert, Ph.
|0 P:(DE-Juel1)130627
|b 2
|u fzj
773 1 8 |a 10.1103/physrevb.93.195444
|b American Physical Society (APS)
|d 2016-05-31
|n 19
|p 195444
|3 journal-article
|2 Crossref
|t Physical Review B
|v 93
|y 2016
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.93.195444
|g Vol. 93, no. 19, p. 195444
|0 PERI:(DE-600)2844160-6
|n 19
|p 195444
|t Physical review / B
|v 93
|y 2016
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:810284
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130627
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
999 C 5 |a 10.1103/PhysRevLett.64.1051
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.65.456
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0169-4332(97)00480-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.60.R2165
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1382869
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.026802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2888733
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.47.6117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2009.08.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.235305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.1491535
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.195318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.165327
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.035310
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3177329
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.205309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/T-ED.1969.16566
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-7091-8752-4
|1 S. Selberherr
|2 Crossref
|9 -- missing cx lookup --
|y 1984
999 C 5 |a 10.1007/978-3-662-04702-6
|1 F. Schwabl
|2 Crossref
|9 -- missing cx lookup --
|y 2002
999 C 5 |a 10.1007/s10825-011-0356-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 N. L. Rowsey
|y 2010
|2 Crossref
|t CSRI Summer Proceedings 2009
|o N. L. Rowsey CSRI Summer Proceedings 2009 2010
999 C 5 |1 A. Jüngel
|y 2011
|2 Crossref
|t Quasi-Hydrodynamic Semiconductor Equations
|o A. Jüngel Quasi-Hydrodynamic Semiconductor Equations 2011
999 C 5 |a 10.1016/j.jcp.2004.10.029
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.35.7959
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. F. Creemer
|y 2011
|2 Crossref
|t Ultra-thin Chip Technology and Applications
|o J. F. Creemer Ultra-thin Chip Technology and Applications 2011
999 C 5 |a 10.1063/1.89697
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.14.556
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.30.4828
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201306281
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.075320
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21