Home > Publications database > Importance of quantum correction for the quantitative simulation of photoexcited scanning tunneling spectra of semiconductor surfaces > print |
001 | 810284 | ||
005 | 20240610121134.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.93.195444 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/11474 |2 Handle |
024 | 7 | _ | |a WOS:000376920400016 |2 WOS |
037 | _ | _ | |a FZJ-2016-03139 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Schnedler, M. |0 P:(DE-Juel1)143949 |b 0 |u fzj |
245 | _ | _ | |a Importance of quantum correction for the quantitative simulation of photoexcited scanning tunneling spectra of semiconductor surfaces |
260 | _ | _ | |a College Park, Md. |c 2016 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1466143944_27117 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Photoexcited scanning tunneling spectroscopy is a promising technique for the determination of carrier concentrations, surface photovoltages, and potentials of semiconductors with atomic spatial resolution. However, extraction of the desired quantities requires computation of the electrostatic potential induced by the proximity of the tip and the tunnel current. This calculation is based on an accurate solution of the Poisson as well as the continuity equations for the tip-vacuum-semiconductor system. For this purpose, the carrier current densities are modeled by classical drift and diffusion equations. However, for small tip radii and highly doped materials, the drift and diffusion transport model significantly overestimates a semiconductor's carrier concentration near the surface, making the quantification of physical properties impossible. In this paper, we apply quantum correction to the drift and diffusion model, in order to account for the so-called quantum compressibility, i.e., reduced compressibility of the carrier gas due to the Pauli principle, in the region of the tip-induced band bending. We compare carrier concentrations, potentials, and tunnel currents derived with and without quantum correction for GaN(101¯0) and GaAs(110) surfaces to demonstrate its necessity. |
536 | _ | _ | |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141) |0 G:(DE-HGF)POF3-141 |c POF3-141 |f POF III |x 0 |
542 | _ | _ | |i 2016-05-31 |2 Crossref |u http://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Dunin-Borkowski, Rafal |0 P:(DE-Juel1)144121 |b 1 |u fzj |
700 | 1 | _ | |a Ebert, Ph. |0 P:(DE-Juel1)130627 |b 2 |u fzj |
773 | 1 | 8 | |a 10.1103/physrevb.93.195444 |b American Physical Society (APS) |d 2016-05-31 |n 19 |p 195444 |3 journal-article |2 Crossref |t Physical Review B |v 93 |y 2016 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.93.195444 |g Vol. 93, no. 19, p. 195444 |0 PERI:(DE-600)2844160-6 |n 19 |p 195444 |t Physical review / B |v 93 |y 2016 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/810284/files/PhysRevB.93.195444.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:810284 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)143949 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130627 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-141 |2 G:(DE-HGF)POF3-100 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
999 | C | 5 | |a 10.1103/PhysRevLett.64.1051 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.65.456 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0169-4332(97)00480-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.60.R2165 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1382869 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.98.026802 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.2888733 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1143/JJAP.47.6117 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.susc.2009.08.002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.91.235305 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1116/1.1491535 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.65.195318 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.67.165327 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.73.035310 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.3177329 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.91.205309 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1109/T-ED.1969.16566 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-3-7091-8752-4 |1 S. Selberherr |2 Crossref |9 -- missing cx lookup -- |y 1984 |
999 | C | 5 | |a 10.1007/978-3-662-04702-6 |1 F. Schwabl |2 Crossref |9 -- missing cx lookup -- |y 2002 |
999 | C | 5 | |a 10.1007/s10825-011-0356-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 N. L. Rowsey |y 2010 |2 Crossref |t CSRI Summer Proceedings 2009 |o N. L. Rowsey CSRI Summer Proceedings 2009 2010 |
999 | C | 5 | |1 A. Jüngel |y 2011 |2 Crossref |t Quasi-Hydrodynamic Semiconductor Equations |o A. Jüngel Quasi-Hydrodynamic Semiconductor Equations 2011 |
999 | C | 5 | |a 10.1016/j.jcp.2004.10.029 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.35.7959 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 J. F. Creemer |y 2011 |2 Crossref |t Ultra-thin Chip Technology and Applications |o J. F. Creemer Ultra-thin Chip Technology and Applications 2011 |
999 | C | 5 | |a 10.1063/1.89697 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.14.556 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.30.4828 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adma.201306281 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.80.075320 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|