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Photoexcited scanning tunneling spectroscopy is a promising technique for the determination of carrier

concentrations, surface photovoltages, and potentials of semiconductors with atomic spatial resolution. However,

extraction of the desired quantities requires computation of the electrostatic potential induced by the proximity

of the tip and the tunnel current. This calculation is based on an accurate solution of the Poisson as well as the

continuity equations for the tip-vacuum-semiconductor system. For this purpose, the carrier current densities

are modeled by classical drift and diffusion equations. However, for small tip radii and highly doped materials,

the drift and diffusion transport model significantly overestimates a semiconductor’s carrier concentration near the

surface, making the quantification of physical properties impossible. In this paper, we apply quantum correction

to the drift and diffusion model, in order to account for the so-called quantum compressibility, i.e., reduced

compressibility of the carrier gas due to the Pauli principle, in the region of the tip-induced band bending. We

compare carrier concentrations, potentials, and tunnel currents derived with and without quantum correction for

GaN(1010) and GaAs(110) surfaces to demonstrate its necessity.

DOI: 10.1103/PhysRevB.93.195444

I. INTRODUCTION

Photoexcited scanning tunneling spectroscopy (STS) is a

powerful tool for the investigation of illumination-induced lo-

cal surface photovoltage, band bending, carrier concentration,

electrostatic potential distribution, and transport parameters

with atomic spatial resolution [1–10]. However, the extraction

of these physical quantities from photoexcited STS usually

requires quantitative simulations [9,11–16]. Recently, we

presented a quantitative description of photoexcited STS and

applied it to photoexcited spectra measured from p-doped

nonpolar GaAs(110) surfaces [10]. The potential and charge

carrier distributions of the tip-vacuum-semiconductor system

were calculated using the Poisson equation and the continuity

equations for electrons and holes. The carrier current density

is given by the classical drift and diffusion transport model.

A Scharfetter-Gummel discretization and a three-dimensional

finite difference algorithm were applied to solve this system

of coupled differential equations [10,17,18].

Although classical drift and diffusion equations are valid in

most regions of a semiconductor, significantly overestimated

carrier concentrations may be obtained in the tip-induced

band bending region for tips with small apex radii and

semiconductors with high doping concentrations: in this

strongly confined region near the semiconductor surface

(so-called tip-induced quantum dot) the classical drift and

diffusion transport model does not account for the reduced

compressibility of an ideal quantum gas [19] (i.e., the

quantum compressibility [20]). Since an overestimation of the

carrier concentration has a major impact on the extraction

of nearly all other physical properties, there is a need to

extend the classical drift and diffusion transport model to

include quantum compressibility. Here, the impact of this

quantum correction on the extraction of physical properties

is illustrated exemplary for ground state and photoexcited

tunneling spectra on GaN(1010) and GaAs(110) surfaces,

respectively.

II. QUANTUM COMPRESSIBILITY

Based on the Pauli principle, it is well known that two

electrons at the same place cannot occupy the same quantum

state. This is a fundamental concept of quantum mechanics

and must also be considered in the description of free electron

gases. It induces a repulsion between electrons (or holes) and

hence limits the compressibility of the electron (hole) gas

[20]. Such quantum mechanical effects become important for

device feature sizes or quantum dot sizes on the order of the de

Broglie wavelength [21], which is, e.g., approximately 17 nm

for electrons in GaAs at room temperature. As this criterion

is fulfilled for quantum dots induced by sharp tips (i.e., tip

radius in the order of the de Broglie wavelength) and moderate

doping concentrations (i.e., free carrier concentration �1018

cm−3), the application of a simple classical drift and diffusion

transport model will overestimate the carrier densities in this

region. Although many widely used device simulators still

rely on this classical treatment, a variety of different strategies

[22,23] have been developed in recent years, including a

quantum mechanical description of the semiconductor device

modeling. Particularly noteworthy is a density-gradient model

derived by Ancona and Tiersten [24]. In this paper we apply

a slightly different approach that is especially suited for the

description of high carrier concentrations inside a tip-induced

quantum dot. The idea is to extend the recently derived model

for the quantitative simulation of photoexcited STS [10] in

order to account for quantum compressibility.

III. REFINEMENT OF THEORETICAL MODEL

IN THERMAL EQUILIBRIUM

In the drift and diffusion equations [Eqs. (8) and (9) in
Ref. [10]] the Einstein relation connects the mobility and
diffusivity of electrons and holes in the semiconductor. Since
the Einstein relation is based on Maxwell-Boltzmann statistics,
the accuracy of the drift and diffusion equation also depends
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on their validity [21]. Although Maxwell-Boltzmann statistics
usually hold for low and medium doped semiconductors
(�1 × 1018 cm−3) [25], the carrier concentration inside the
tip-induced quantum dot may be far above the limit of validity
for this distribution function. Hence Maxwell-Boltzmann
statistics have to be replaced by Fermi-Dirac statistics in
the Einstein relation [26]. Following the idea of Pinto [26]
and Rowsey et al. [21] we define perturbation factors γn

and γp that account for the deviation between the electron
and hole concentrations nMB and pMB derived using the
Maxwell-Boltzmann distribution function and the concen-
trations nFD and pFD obtained employing the Fermi-Dirac
distribution function:

γn :=
nFD

nMB

= F 1
2

(

EF − EC

kT

)

exp

(

EC − EF

kT

)

, (1)

γp :=
pFD

pMB

= F 1
2

(

EV − EF

kT

)

exp

(

EF − EV

kT

)

. (2)

EV (EC) denotes the valence (conduction) band edge, F 1
2

is

the Fermi-Dirac integral, and EF denotes the Fermi energy
in thermal equilibrium. With the help of the definitions (1)
and (2), the carrier concentrations derived using Fermi Dirac
statistics can be rewritten as follows:

nFD = γn × nMB = γnNC exp
EF − EC

kT
, (3)

pFD = γp × pMB = γpNV exp
EV − EF

kT
, (4)

where NV and NC are the effective densities of states of the
valence and conduction band, respectively (as, e.g., defined
in Ref. [10]). The right hand side of Eqs. (3) and (4) can be
mathematically transformed such that the perturbation factors
appear in the argument of the exponential function only. This
allows for the introduction of additional repulsive potentials
φn,rep and φp,rep that prevent further compression of the carrier
gases, when described by Maxwell-Boltzmann statistics [21]:

nFD = NC exp
EF − EC + kT ln γn

kT

= NC exp
EF − EC + eφn,rep

kT
, (5)

pFD = NV exp
EV − EF + kT ln γp

kT

= NV exp
EV − EF − eφp,rep

kT
. (6)

The repulsive potentials φn,rep and φp,rep are thus defined as

φn,rep :=
kT

e
ln γn, (7)

φp,rep := −
kT

e
ln γp. (8)

According to Eqs. (1), (2), (7), and (8) they tend to zero

for semiconductor regions, where no quantum correction, i.e.,

correction for quantum compressibility, is required, since in

these regions Maxwell-Boltzmann statistics equal Fermi-Dirac

statistics. Equations (7) and (8) are suitable for application

in the numerical iteration scheme presented in Ref. [10]:

at the beginning of every Newton iteration step, φn,rep is

derived from the electron concentration ni,j,k, known from

the previous iteration step, for every node point (i,j,k)

of the semiconductor. The sum φi,j,k + φn,rep then replaces

the potential φi,j,k in the iteration formula for the electron

concentration [Eq. (12) in Ref. [10]]. The iteration formula

for the hole concentration is modified analogously.

IV. QUANTUM COMPRESSIBILITY FOR EXCITED

SEMICONDUCTORS

At this stage, we focus on the quantum compressibility

of the carrier gases in photoexcited semiconductors. Under

illumination, electron-hole pairs are generated in the semicon-

ductor. In order to account for these excited carriers in all of the

equations presented above [i.e., Eqs. (1)–(8)], the Fermi energy

EF has to be replaced by quasi-Fermi energies EFQ,V and EFQ,C

for holes and electrons, respectively (see, e.g., Ref. [10]).

The quasi-Fermi energies are required for the calculation

of the perturbation factors γn and γp, as well as for the

computation of the tunnel current (cf. Sec. IV B in Ref. [10])

and the surface charge density (cf. Sec. V C in Ref. [10]).

Calculations incorporating quantum compressibility reveal

significantly reduced carrier concentrations in the region of

the tip-induced quantum dot. Thus, instead of deriving the

quasi-Fermi levels by integrating over the density of states [10]

obtained from theoretical computations to account for high

carrier concentrations, it is now sufficient to assume parabolic

bands. Remaining within the framework of the parabolic

band approximation has several advantages: first, one can

use analytical approximations for the inverse Fermi-Dirac

integral, such as the inverse Joyce-Dixon approximation [27],

to speed up the iteration. Second, instead of depending on the

full band structure, EFQ,V and EFQ,C are evaluated with the

help of effective density of states masses. While the effective

masses are known explicitly, we find significant differences,

e.g., between the density of states of GaAs calculated by

Chelikowsky and Cohen [28,29] and that presented by, e.g.,

Yin et al. [30]. The results of Chelikowsky and Cohen were

used in Ref. [10] and likely overestimate the density of

states near the conduction band edge. Such deviations of the

density of states, particularly at the band edges, critically affect

quasi-Fermi energies and thus tunnel currents.

In view of the initial objective of the extraction of physical

quantities (i.e., surface photovoltage, carrier concentrations,

potentials, transport parameters) from photoexcited STS,

much more accurate results should be obtained by applying

the quantum correction and the parabolic band approximation,

as a result of a reduction in carrier concentrations.

V. RESULTS OF CALCULATION

In order to illustrate the importance of the preceding dis-

cussion, we compare the results of tunnel current simulations

with and without taking into account quantum compressibility.

A. GaN(1010)

As a first example we focus on the nonpolar m-plane GaN

cleavage surface (free carrier concentration ≈3 × 1018 cm−3).

A typical current voltage spectrum measured on a clean
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FIG. 1. (a) Calculated cross-sectional plots of the electron concentration in the tip-induced quantum dot near the (1010) surface of a n-doped

GaN for a sample voltage of −3.5 V. Left frame: electron concentration for the classical drift-diffusion model without inclusion of quantum

compressibility. The actual electron concentration near the surface is much higher than the scale contrast available. Hence the inset shows the

area directly at the surface scaled by a factor of 0.05 compared to the color scale. Right frame: electron concentration for a drift-diffusion model

taking into account quantum compressibility. By including this quantum correction, the electron concentration decreases by approximately a

factor of 20 near the surface. (b) Cross-sectional plot of the repulsive potential φn,rep.. The repulsive potential reaches its maximum in the region

of the tip-induced quantum dot near the surface, where the electron concentration is highest, and decreases to zero inside the semiconductor.

(c) Tunnel spectrum measured on the clean, nonpolar n-doped GaN(1010) cleavage surface (circles) taken from Ref. [16]. The red solid line

corresponds to the simulation of the tunnel current with quantum correction. Onset voltage and slope of the calculated curve coincide with

the measurement. In contrast the results of the same simulation without quantum correction, as shown by the blue dash-dotted line, cannot

reproduce the measurement. The tunnel current is increased by at least one order of magnitude.

GaN(1010) surface in ultrahigh vacuum and at 300 K is shown

as black circles in Fig. 1(c). Since we focus on the electron

accumulation near the surface, the spectrum is shown for

negative sample voltages only. At positive voltages electrons

cannot accumulate and hence the quantum correction does

not affect the positive branches of the tunnel current spectra.

For our simulations, we assume a tip radius of 10 nm and

a tip-sample separation of 1.04 nm. Calculations with and

without quantum correction were performed with identical

parameters. In both cases, the quasi-Fermi energies were

obtained by using parabolic band approximations. Hence all

changes, in both carrier concentrations and tunnel currents, are

a direct consequence of the quantum correction only.

Figure 1(a) shows cross-sectional plots of the electron

concentration in the GaN semiconductor without (left frame)

and with (right) quantum correction for −3.5 V sample

voltage. One clearly observes that the peak electron density

is lower by a factor of about 20 and hence the electron gas

is compressed less in the latter case. The cross-sectional

plot of the repulsive potential in Fig. 1(b) illustrates that

φn,rep reaches its maximum (∼0.3 V) in the region of the

tip-induced quantum dot near the surface, where the electron

concentration is highest, and decreases to zero inside the

semiconductor.

The different surface electron concentrations critically

affect the tunnel current, as indicated in Fig. 1(c): the red solid

line corresponds to the simulation of the tunnel current with

quantum correction. Onset voltage and slope of the calculated

curve agree with the experimental data. In contrast the results

of the same simulation without quantum correction (blue dash-

dotted line) cannot reproduce the measurement: the calculated

tunnel current is larger by at least one order of magnitude

(small negative sample voltages) or even more (larger negative

sample voltages). Hence the quantum correction significantly

alters the tunnel current simulation.

B. GaAs(110)

As a second example, we recall the measurement on

GaAs(110) and simulations (without accounting for quantum

compressibility) presented in Ref. [10]: photoexcited STS

was performed on a p-doped GaAs(110) surface, which was

illuminated by a 1 mW laser diode at a wavelength of 785 nm.

An increased tunnel current was observed under illumination

for negative sample voltages. In contrast, at positive voltages,

the tunnel current remained unchanged. We demonstrated

that this effect is determined mainly by the accumulation

of photoexcited electrons in the region of the tip-induced

quantum dot at negative sample voltages. The question is

to what extent the electron concentration in the tip-induced

quantum dot will be reduced due to quantum compressibility

and how this change will affect the tunnel current.

In order to answer this question, we turn to the cross-

sectional plots presented in Fig. 2: the plots (a1) and (a2)

show the calculated electrostatic potential of the tip-vacuum-

semiconductor system for a sample voltage of −1.5 V, a

tip-sample separation of 0.925 nm, and a tip radius of 20 nm

[31]. The plots (b1) and (b2) show the corresponding electron

concentrations. The results presented in the right column [(a2)

and (b2)] are based on a simulation that includes quantum

compressibility. The quasi-Fermi energies were derived in the

parabolic band approximation (see Sec. IV). In contrast, the

results in the left column [(a1) and (b1)] were obtained without

accounting for quantum correction and by determining the

quasi-Fermi energies using the density of states calculation of

Chelikowsky and Cohen [28,29]. The data in the latter two

plots were taken from Ref. [10]. All other input parameters of

both simulations (i.e., tip-sample separation, irradiance of the

laser, etc.) were the same.

A comparison of the simulations reveals a lower electron

concentration in the region of the tip-induced quantum dot for

the simulation that incorporates quantum compressibility. The
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FIG. 2. Calculated cross-sectional plots of (a1),(a2) the electro-

static potential φ and (b1),(b2) the electron concentration n for a

tip (tip radius 20 nm) located 0.925 nm away from a GaAs(110)

sample surface ([Zn] = (1–2) × 1018 cm−3) under illumination. Left

column: classical results without accounting for quantum compress-

ibility, taken from Ref. [10]; right column: results incorporating the

correction for quantum compressibility. A sample voltage of −1.5 V

is applied. The interface between semiconductor (SC) and vacuum

is at the position z = 0 (vertical axes). Equipotential lines are drawn

in steps of −0.1 V, starting with the green line at a potential of

−0.1 V. The reduced tip-induced band bending in (a2) compared

to (a1) is attributed mainly to the refined determination of the

quasi-Fermi levels (compared to Ref. [10]), while the reduced electron

concentration in (b2) compared to (b1) is caused by both the reduced

potential and quantum compressibility.

electron concentration is reduced by a factor of ∼10. This is

in analogy to the above case of GaN(1010).

Furthermore, a decreased electrostatic potential is observed.

This may seem surprising at first view, since a lower electron

concentration should lead to a weaker screening of the electric

field between the tip and the semiconductor and hence to

an increased electrostatic potential. This apparently confusing

situation is clarified by drawing attention to the surface charge

density. In analogy to Refs. [10,32], we model the empty C3

(Ga-derived) surface state as a Gaussian distribution, peaking

0.33 eV above the conduction band minimum with a FWHM

of 0.25 eV and assuming one state per surface cation for

both simulations. The surface state is partially occupied by

photoexcited electrons up to EFQ,C [10]. Although the electron

concentration in the tip-induced quantum dot is lowered by

the reduced compressibility, the quasi-Fermi level EFQ,C is

increased slightly, since it does not depend on the density

of states calculated by Chelikowsky and Cohen anymore

(cf. Sec. IV). An increased quasi-Fermi level increases the

charge density in the intrinsic C3 surface state and hence

leads to a stronger screening of the tip-induced potential.

Thus the reduced potential of the tip-induced quantum dot

is attributed mainly to the refined determination of the

quasi-Fermi levels, while the reduced electron concentration

is caused by both the reduced potential and the quantum

compressibility. Note, for GaN(1010), the surface state cannot

be filled at negative voltages and therefore it is not influencing

the band bending [16].

We now turn to the discussion of the impact of quantum

compressibility on the tunnel current. Figures 3(a) and 3(b)

show measured and the simulated tunnel currents without and

with incorporation of quantum compressibility, respectively,

for negative sample voltages. In addition to the tunnel currents

measured without (black triangles) and with (red squares)

illumination, four simulated currents or current contributions

are plotted in both graphs: the total current under dark

conditions (black solid line), the current components under

illumination arising from tunneling out of the valence band

(IV, green dashed line) and out of the conduction band (IPhoto,

blue dash-dotted line) and the total current under illumination

(red solid line), which is the sum of the components IV and

IPhoto. For the reasons of comparability, the additional, red

dotted line in Fig. 3(a) corresponds to the simulated total tunnel

current of an illuminated sample without quantum correction,

but incorporating the parabolic band approximation.

First, comparing the simulation of the tunnel current under

dark conditions [black lines in Figs. 3(a) and 3(b)] reveals no

change when introducing the quantum correction, because no

electrons accumulate in the tip-induced quantum dot (minority

carriers in p-type GaAs). Second, the current component

arising from photoexcited electrons tunneling out of the

conduction band (IPhoto, blue dashed-dotted lines) is reduced

significantly for the quantum corrected model as compared to

the classical model. This is due to the lower compressibility,

the reduced density of states (see Sec. IV) and hence the lower

electron concentration in the tip-induced band bending zone.

Third, the current component arising from electrons tunneling

out of the valence band (IV, green dashed lines) is increased

for the quantum corrected model, since the above discussed

stronger screening of the tip-induced band bending leads to a

larger number of valence band states available for tunneling.

The enhanced screening is illustrated in Fig. 3(c), where the

band edge positions vs distance are shown for a sample voltage

of −1.5 V and under illumination. The enhanced screening

reduces the band bending from the dashed white lines to the

solid black line positions. As a result, the calculated total

current Itotal = IPhoto + IV is in very good agreement with

the measurement for the quantum corrected simulation: in

particular the match of the onset voltage, which is particularly

important for the determination of the surface photovoltage, is

improved significantly.

At last we compare the tunnel currents with [red solid

line in Fig. 3(b)] and without [red dotted line in Fig. 3(a)]

quantum correction using identical density of states (i.e., in

parabolic band approximation). Deviations in the these two

currents are caused by the quantum correction, only. Due to

the above described occupation of the C3 surface state and

the resulting limitation of the band bending, the quantum

correction alters the tunnel current in this special case by a

factor of ≈2, only. However, this is still a significant change

if quantitative physical parameters are determined by light

excited STS. Without a surface state being occupied the

effect is significantly larger as shown above for the case of

GaN(1010).
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FIG. 3. Measured and simulated tunnel currents (a) without and (b) with incorporation of quantum compressibility for a GaAs(110)

surface ([Zn] = (1–2) × 1018 cm−3) at negative sample voltages. Besides the measured tunnel currents without (black triangles) and with (red

squares) illumination, different simulated current contributions are plotted: the total current under dark conditions (black solid line), the current

components arising from tunneling out of the valence band IV (green dashed line) as well as out of the conduction band IPhoto (blue dash-dotted

line) under illumination, and the total current under illumination (red solid line), which is the sum of the components IV and IPhoto. It should be

noted that no changes between the simulated currents with and without the incorporation of quantum compressibility occur at positive voltages

due to the absence of regions with high carrier accumulation. For highlighting the effect of quantum compressibility only, compare the red

solid line in (b) with the red dotted line in (a), which gives the simulated total current using the classical model with parabolic bands. (c) Band

edge positions as a function of the distance from the surface of the semiconductor for a sample voltage of −1.5 V and under illumination. The

dashed (solid) lines indicate the band edges for a simulation without (with) quantum correction. The upper scale shows the density of surface

states C3. Inset: magnification of the occupation of the Gaussian modeled C3 surface state for the simulation with (solid line) and without

(dashed line) quantum correction.

VI. CONCLUSIONS

Taking all the above aspects into consideration, the im-

portant role of quantum compressibility for the simulation

of photoexcited scanning tunneling spectroscopy is evident:

accurate determination of the carrier concentrations in the

region of the tip-induced quantum dot cannot be achieved

solely on the basis of classical semiconductor equations,

since the drift and diffusion transport model requires ade-

quate quantum correction. The introduction of an additional

repulsive potential that accounts for quantum compressibility

results in a significantly reduced carrier concentration near

the semiconductor surface. As a result of the lower carrier

concentration, it is sufficient to derive the corresponding

quasi-Fermi energies within the parabolic band approxi-

mation, which improves the determination of the surface

photovoltage. Hence the quantification of physical properties

from photoexcited STS is improved strongly by including

quantum correction. This correction must be applied not only

for GaN(1010) or GaAs(110) but also for other materials

and their nanostructures with higher carrier concentrations

(�1 × 1018 cm−3). Besides scanning tunneling microscopy

and spectroscopy the formalism described above may improve

other scanning probe related spectroscopy techniques.
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