000810311 001__ 810311
000810311 005__ 20210129223405.0
000810311 0247_ $$2doi$$a10.1088/0953-8984/28/31/316001
000810311 0247_ $$2ISSN$$a0953-8984
000810311 0247_ $$2ISSN$$a1361-648X
000810311 0247_ $$2WOS$$aWOS:000378325200010
000810311 0247_ $$2altmetric$$aaltmetric:5306693
000810311 0247_ $$2pmid$$apmid:27301682
000810311 037__ $$aFZJ-2016-03162
000810311 082__ $$a530
000810311 1001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b0$$eCorresponding author$$ufzj
000810311 245__ $$aThe inverse thermal spin–orbit torque and the relation of the Dzyaloshinskii–Moriya interaction to ground-state energy currents
000810311 260__ $$aBristol$$bIOP Publ.$$c2016
000810311 3367_ $$2DRIVER$$aarticle
000810311 3367_ $$2DataCite$$aOutput Types/Journal article
000810311 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1489839361_32586
000810311 3367_ $$2BibTeX$$aARTICLE
000810311 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810311 3367_ $$00$$2EndNote$$aJournal Article
000810311 520__ $$aUsing the Kubo linear-response formalism we derive expressions to calculate the electronic contribution to the heat current generated by magnetization dynamics in ferromagnetic metals with broken inversion symmetry and spin–orbit interaction (SOI). The effect of producing heat currents by magnetization dynamics constitutes the Onsager reciprocal of the thermal spin–orbit torque (TSOT), i.e. the generation of torques on the magnetization due to temperature gradients. We find that the energy current driven by magnetization dynamics contains a contribution from the Dzyaloshinskii–Moriya interaction (DMI), which needs to be subtracted from the Kubo linear response of the energy current in order to extract the heat current. We show that the expressions of the DMI coefficient can be derived elegantly from the DMI energy current. Guided by formal analogies between the Berry phase theory of DMI on the one hand and the modern theory of orbital magnetization on the other hand we are led to an interpretation of the latter in terms of energy currents as well. Based on ab initio calculations we investigate the electronic contribution to the heat current driven by magnetization dynamics in Mn/W(0 0 1) magnetic bilayers. We predict that fast domain walls drive strong heat currents.
000810311 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000810311 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000810311 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x2
000810311 588__ $$aDataset connected to CrossRef
000810311 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
000810311 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b2
000810311 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/28/31/316001$$gVol. 28, no. 31, p. 316001 -$$n31$$p316001$$tJournal of physics / Condensed matter$$v28$$x1361-648X$$y2016
000810311 8564_ $$uhttps://juser.fz-juelich.de/record/810311/files/cm_28_31_316001.pdf$$yRestricted
000810311 8564_ $$uhttps://juser.fz-juelich.de/record/810311/files/cm_28_31_316001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810311 909CO $$ooai:juser.fz-juelich.de:810311$$pVDB
000810311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b0$$kFZJ
000810311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000810311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b2$$kFZJ
000810311 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000810311 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000810311 9141_ $$y2016
000810311 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810311 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2014
000810311 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810311 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810311 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810311 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810311 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810311 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810311 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810311 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000810311 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810311 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810311 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810311 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000810311 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000810311 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000810311 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000810311 980__ $$ajournal
000810311 980__ $$aVDB
000810311 980__ $$aI:(DE-Juel1)IAS-1-20090406
000810311 980__ $$aI:(DE-Juel1)PGI-1-20110106
000810311 980__ $$aI:(DE-82)080009_20140620
000810311 980__ $$aI:(DE-82)080012_20140620
000810311 980__ $$aUNRESTRICTED
000810311 981__ $$aI:(DE-Juel1)PGI-1-20110106