000810522 001__ 810522
000810522 005__ 20210129223419.0
000810522 037__ $$aFZJ-2016-03191
000810522 1001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b0$$eCorresponding author$$ufzj
000810522 1112_ $$aPlant 2030: Status Seminar 2016$$cPotsdam$$d2016-03-14 - 2016-03-16$$wGermany
000810522 245__ $$aLabelling plants with radioactive 11CO2 for noninvasive 3D imaging with PET
000810522 260__ $$c2016
000810522 3367_ $$033$$2EndNote$$aConference Paper
000810522 3367_ $$2BibTeX$$aINPROCEEDINGS
000810522 3367_ $$2DRIVER$$aconferenceObject
000810522 3367_ $$2ORCID$$aCONFERENCE_POSTER
000810522 3367_ $$2DataCite$$aOutput Types/Conference Poster
000810522 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1466410926_15456$$xInvited
000810522 520__ $$aPlant carbon dioxide fixation and subsequent photoassimilates allocation are fundamentally important for survival, growth and yield of plants. Since carbon distribution in a plant is highly dynamic its investigation is a unique challenge. Radiotracers, such as radioactive carbon dioxide 11CO2 can be administered to a leaf or canopy for tracing photoassimilate distribution within a plant. The 3D distribution of the 11C tracer can be monitored with a positron emission tomograph (PET) in order to obtain carbon transport parameters for functional phenotyping. For labelling plants we established a gas exchange system for both measuring gas exchange of leaves and administering 11CO2 to the plant. Handling the radioactive carbon dioxide safely requires special precautions which are implemented in the system. Here, we present results of the first gas exchange measurements of pea (Pisum sativum) under drought stress as well as images of 11C allocation into the root measured with the PET system ‘PlanTIS’. For an improved 3D visualization of 11C transport a new PET system (phenoPET) was constructed, which is currently under evaluation. First experimental results on plants with both phenoPET and the gas exchange system are expected by mid of 2016. In future, it is planned to automatize plant transport, labeling and tracer measurement. All installations combined will facilitate dynamic monitoring and quantification of carbon assimilation with regards to different phenotypes and under controlled environmental conditions.
000810522 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000810522 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b1$$ufzj
000810522 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b2$$ufzj
000810522 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b3$$ufzj
000810522 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b4$$ufzj
000810522 7001_ $$0P:(DE-Juel1)129332$$aHombach, Thomas$$b5$$ufzj
000810522 909CO $$ooai:juser.fz-juelich.de:810522$$pVDB
000810522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b0$$kFZJ
000810522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich$$b1$$kFZJ
000810522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b2$$kFZJ
000810522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b3$$kFZJ
000810522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b4$$kFZJ
000810522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129332$$aForschungszentrum Jülich$$b5$$kFZJ
000810522 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000810522 9141_ $$y2016
000810522 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810522 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000810522 980__ $$aposter
000810522 980__ $$aVDB
000810522 980__ $$aUNRESTRICTED
000810522 980__ $$aI:(DE-Juel1)IBG-2-20101118