000810622 001__ 810622
000810622 005__ 20210129223502.0
000810622 0247_ $$2doi$$a10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P
000810622 0247_ $$2WOS$$aWOS:000084993500013
000810622 037__ $$aFZJ-2016-03282
000810622 082__ $$a610
000810622 1001_ $$0P:(DE-HGF)0$$aGembris, Daniel$$b0$$eCorresponding author
000810622 245__ $$aFunctional magnetic resonance imaging in real time (FIRE): Sliding-window correlation analysis and reference-vector optimization
000810622 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2000
000810622 3367_ $$2DRIVER$$aarticle
000810622 3367_ $$2DataCite$$aOutput Types/Journal article
000810622 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1466576404_14901
000810622 3367_ $$2BibTeX$$aARTICLE
000810622 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810622 3367_ $$00$$2EndNote$$aJournal Article
000810622 520__ $$aNew algorithms for correlation analysis are presented that allow the mapping of brain activity from functional MRI (fMRI) data in real time during the ongoing scan. They combine the computation of the correlation coefficients between measured fMRI time-series data and a reference vector with “detrending,” a technique for the suppression of non-stimulus-related signal components, and the “sliding-window technique.” Using this technique, which limits the correlation computation to the last N measurement time points, the sensitivity to changes in brain activity is maintained throughout the whole experiment. For increased sensitivity in activation detection a fast and robust optimization of the reference vector is proposed, which takes into account a realistic model of the hemodynamic response function to adapt the parameterized reference vector to the measured data. Based on the described correlation method, real-time fMRI experiments using visual stimulation paradigms have been performed successfully on a clinical MR scanner, which was linked to an external workstation for image analysis.
000810622 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000810622 7001_ $$0P:(DE-HGF)0$$aTaylor, John G.$$b1
000810622 7001_ $$0P:(DE-HGF)0$$aSchor, Stefan$$b2
000810622 7001_ $$0P:(DE-Juel1)132108$$aFrings, Wolfgang$$b3$$ufzj
000810622 7001_ $$0P:(DE-HGF)0$$aSuter, Dieter$$b4
000810622 7001_ $$0P:(DE-HGF)0$$aPosse, Stefan$$b5
000810622 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P$$n2$$p259-268$$tMagnetic resonance in medicine$$v43$$x0740-3194$$y2000
000810622 8564_ $$uhttps://juser.fz-juelich.de/record/810622/files/Gembris_et_al-2000-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000810622 8564_ $$uhttps://juser.fz-juelich.de/record/810622/files/Gembris_et_al-2000-Magnetic_Resonance_in_Medicine.gif?subformat=icon$$xicon$$yRestricted
000810622 8564_ $$uhttps://juser.fz-juelich.de/record/810622/files/Gembris_et_al-2000-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810622 8564_ $$uhttps://juser.fz-juelich.de/record/810622/files/Gembris_et_al-2000-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810622 8564_ $$uhttps://juser.fz-juelich.de/record/810622/files/Gembris_et_al-2000-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810622 8564_ $$uhttps://juser.fz-juelich.de/record/810622/files/Gembris_et_al-2000-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810622 909CO $$ooai:juser.fz-juelich.de:810622$$pVDB
000810622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132108$$aForschungszentrum Jülich$$b3$$kFZJ
000810622 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000810622 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810622 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2014
000810622 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810622 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810622 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810622 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810622 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810622 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810622 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000810622 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000810622 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000810622 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810622 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000810622 9201_ $$0I:(DE-Juel1)VDB54$$kIME$$lInstitut für Medizin$$x1
000810622 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x2
000810622 980__ $$ajournal
000810622 980__ $$aVDB
000810622 980__ $$aI:(DE-Juel1)JSC-20090406
000810622 980__ $$aI:(DE-Juel1)VDB54
000810622 980__ $$aI:(DE-Juel1)VDB62
000810622 980__ $$aUNRESTRICTED
000810622 981__ $$aI:(DE-Juel1)VDB54
000810622 981__ $$aI:(DE-Juel1)VDB62