000810743 001__ 810743
000810743 005__ 20240712100958.0
000810743 0247_ $$2doi$$a10.1007/s11263-016-0909-2
000810743 0247_ $$2ISSN$$a0920-5691
000810743 0247_ $$2ISSN$$a1573-1405
000810743 0247_ $$2WOS$$aWOS:000382977200003
000810743 037__ $$aFZJ-2016-03335
000810743 041__ $$aEnglish
000810743 082__ $$a004
000810743 1001_ $$0P:(DE-Juel1)129347$$aKrajsek, Kai$$b0$$eCorresponding author$$ufzj
000810743 245__ $$aA Riemannian Bayesian Framework for Estimating Diffusion Tensor Images
000810743 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016
000810743 3367_ $$2DRIVER$$aarticle
000810743 3367_ $$2DataCite$$aOutput Types/Journal article
000810743 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568969997_27158
000810743 3367_ $$2BibTeX$$aARTICLE
000810743 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810743 3367_ $$00$$2EndNote$$aJournal Article
000810743 520__ $$aDiffusion tensor magnetic resonance imaging (DT-MRI) is a non-invasive imaging technique allowing to estimate the molecular self-diffusion tensors of water within surrounding tissue. Due to the low signal-to-noise ratio of magnetic resonance images, reconstructed tensor images usually require some sort of regularization in a post-processing step. Previous approaches are either suboptimal with respect to the reconstruction or regularization step. This paper presents a Bayesian approach for simultaneous reconstruction and regularization of DT-MR images that allows to resolve the disadvantages of previous approaches. To this end, estimation theoretical concepts are generalized to tensor valued images that are considered as Riemannian manifolds. Doing so allows us to derive a maximum a posteriori estimator of the tensor image that considers both the statistical characteristics of the Rician noise occurring in MR images as well as the nonlinear structure of tensor valued images. Experiments on synthetic data as well as real DT-MRI data validate the advantage of considering both statistical as well as geometrical characteristics of DT-MRI.
000810743 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000810743 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x1
000810743 588__ $$aDataset connected to CrossRef
000810743 7001_ $$0P:(DE-HGF)0$$aMenzel, Marion I.$$b1
000810743 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b2$$ufzj
000810743 773__ $$0PERI:(DE-600)1479903-0$$a10.1007/s11263-016-0909-2$$n3$$p272–299$$tInternational journal of computer vision$$v120$$x1573-1405$$y2016
000810743 8564_ $$uhttps://juser.fz-juelich.de/record/810743/files/art_10.1007_s11263-016-0909-2.pdf$$yRestricted
000810743 8564_ $$uhttps://juser.fz-juelich.de/record/810743/files/art_10.1007_s11263-016-0909-2.gif?subformat=icon$$xicon$$yRestricted
000810743 8564_ $$uhttps://juser.fz-juelich.de/record/810743/files/art_10.1007_s11263-016-0909-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810743 8564_ $$uhttps://juser.fz-juelich.de/record/810743/files/art_10.1007_s11263-016-0909-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810743 8564_ $$uhttps://juser.fz-juelich.de/record/810743/files/art_10.1007_s11263-016-0909-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810743 8564_ $$uhttps://juser.fz-juelich.de/record/810743/files/art_10.1007_s11263-016-0909-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810743 909CO $$ooai:juser.fz-juelich.de:810743$$pVDB
000810743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129347$$aForschungszentrum Jülich$$b0$$kFZJ
000810743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b2$$kFZJ
000810743 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000810743 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x1
000810743 9141_ $$y2016
000810743 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810743 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810743 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J COMPUT VISION : 2014
000810743 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810743 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810743 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810743 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810743 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810743 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810743 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810743 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810743 920__ $$lyes
000810743 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000810743 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1
000810743 980__ $$ajournal
000810743 980__ $$aVDB
000810743 980__ $$aI:(DE-Juel1)IBG-2-20101118
000810743 980__ $$aI:(DE-Juel1)IEK-8-20101013
000810743 980__ $$aUNRESTRICTED
000810743 981__ $$aI:(DE-Juel1)ICE-3-20101013