001     810765
005     20240711092305.0
024 7 _ |2 doi
|a 10.4416/JCST2015-00081
024 7 _ |2 WOS
|a WOS:000378301100002
037 _ _ |a FZJ-2016-03354
082 _ _ |a 670
100 1 _ |0 P:(DE-Juel1)145981
|a Böhm, Anna
|b 0
|u fzj
245 _ _ |a Thermal Shock and Thermo-mechanical Behavior of Carbon Reduced and Carbon Free Refractories
260 _ _ |a Baden-Baden
|b Göller
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1466769727_10252
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The thermal shock behaviour of novel carbon-reduced refractories with maximum grain size of 1 mm was investigated. A wedge splitting test for small specimen geometries (max. 40 × 40 × 20 mm3) was successfully implemented with different loading configurations to determine "work of fracture" and thermal shock parameters. Additionally, heating-up thermal shock tests were performed with an electron beam facility. The addition of 2.5 wt% ZrO2 and TiO2 to Al2O3 refractories appears to improve their thermal shock resistance due to microstructural changes that reduce brittleness and inhibit critical crack growth. However, a phase transition of ZrO2 affects the properties at elevated temperature. For another pure alumina refractory, no geometry-independent value for the work of fracture could be obtained for the sample geometry used, which is probably related to the formation of a large interaction zone of the fracture surfaces. Al2O3-C materials with addition of semi-conductive Si and nanoparticles revealed a strong effect of the pressing direction on the work of fracture. However, the thermal shock parameter R'''' was hardly affected by the different additives. Furthermore, thermal shock tests using the electron beam facility JUDITH 1 did not indicate any significant differences in the damage pattern of the different Al2O3-C materials.
536 _ _ |0 G:(DE-HGF)POF3-111
|a 111 - Efficient and Flexible Power Plants (POF3-111)
|c POF3-111
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |0 P:(DE-HGF)0
|a Dudczig, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Fruhstorfer, J.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Mertke, A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Aneziris, C. G.
|b 4
700 1 _ |0 P:(DE-Juel1)129755
|a Malzbender, Jürgen
|b 5
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2577907-2
|a 10.4416/JCST2015-00081
|n 2
|p 155-165
|t Journal of ceramic science and technology
|v 7
|x 2190-9385
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/810765/files/10.4416_JCST2015-00081-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:810765
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145981
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129755
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-111
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J CERAM SCI TECHNOL : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21