000810767 001__ 810767
000810767 005__ 20240711085551.0
000810767 0247_ $$2doi$$a10.1021/acs.jpcc.6b00318
000810767 0247_ $$2ISSN$$a1932-7447
000810767 0247_ $$2ISSN$$a1932-7455
000810767 0247_ $$2WOS$$aWOS:000375521700003
000810767 037__ $$aFZJ-2016-03356
000810767 082__ $$a540
000810767 1001_ $$0P:(DE-HGF)0$$aVinod Chandran, C.$$b0$$eCorresponding author
000810767 245__ $$aSolid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li $_{1+ x}$ Al $_{x}$ Ti $_{2– x}$ (PO 4 ) $_{3}$ (0.0 ≤  x  ≤ 1.0)
000810767 260__ $$aWashington, DC$$bSoc.$$c2016
000810767 3367_ $$2DRIVER$$aarticle
000810767 3367_ $$2DataCite$$aOutput Types/Journal article
000810767 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467200565_3584
000810767 3367_ $$2BibTeX$$aARTICLE
000810767 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810767 3367_ $$00$$2EndNote$$aJournal Article
000810767 520__ $$aThe local structure and mobility of lithium ions of the NASICON-type ionic conductor Li1+xAlxTi2–x(PO4)3 (with x = 0.0, 0.1, 0.2, 0.35, 0.5, 0.7 and 1.0), synthesized using conventional solid-state reaction route have been studied with solid-state nuclear magnetic resonance (NMR) techniques. 6Li, 7Li, 27Al, and 31P solid-state NMR experiments have been employed to trace the structural changes with varying cation concentration. The structural evolution and the creation of new Al and P environments with changing cation contents were studied by magic-angle spinning (MAS) NMR measurements. 6Li MAS NMR and 27Al triple-quantum MAS (3QMAS) show high-resolution spectra enabling site assignments and phase-purity inspections. The temperature dependences of 7Li NMR spin–lattice relaxation (SLR) rates for different compositions yield important information on the lithium ion mobility in the systems. Li ion jump rates, the activation energies, and the dimensionality of Li diffusion were deduced from the SLR experiments. A vacancy migration model has been proposed for the Li+ ionic diffusion process in pure-phase Li1+xAlxTi2–x(PO4)3 prepared by solid-state reaction. Above a certain threshold value of x (0.5) additional phosphate phases appear that slows down diffusion. This phenomenon can be observed from 6Li exchange spectroscopy. The optimum cation concentration for maximum ionic mobility in the phase-pure Li1+xAlxTi2–x(PO4)3 system can be read directly from the solid-state NMR results.
000810767 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000810767 588__ $$aDataset connected to CrossRef
000810767 7001_ $$0P:(DE-Juel1)151260$$aPristat, Sylke$$b1$$ufzj
000810767 7001_ $$0P:(DE-HGF)0$$aWitt, Elena$$b2
000810767 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b3$$ufzj
000810767 7001_ $$0P:(DE-HGF)0$$aHeitjans, Paul$$b4
000810767 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.6b00318$$gVol. 120, no. 16, p. 8436 - 8442$$n16$$p8436 - 8442$$tThe @journal of physical chemistry <Washington, DC> / C$$v120$$x1932-7447$$y2016
000810767 8564_ $$uhttps://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.pdf$$yRestricted
000810767 8564_ $$uhttps://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.gif?subformat=icon$$xicon$$yRestricted
000810767 8564_ $$uhttps://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810767 8564_ $$uhttps://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810767 8564_ $$uhttps://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810767 8564_ $$uhttps://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810767 909CO $$ooai:juser.fz-juelich.de:810767$$pVDB
000810767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151260$$aForschungszentrum Jülich$$b1$$kFZJ
000810767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b3$$kFZJ
000810767 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000810767 9141_ $$y2016
000810767 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810767 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2014
000810767 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810767 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810767 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810767 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810767 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810767 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810767 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810767 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810767 920__ $$lyes
000810767 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000810767 980__ $$ajournal
000810767 980__ $$aVDB
000810767 980__ $$aUNRESTRICTED
000810767 980__ $$aI:(DE-Juel1)IEK-1-20101013
000810767 981__ $$aI:(DE-Juel1)IMD-2-20101013