001     810767
005     20240711085551.0
024 7 _ |a 10.1021/acs.jpcc.6b00318
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a WOS:000375521700003
|2 WOS
037 _ _ |a FZJ-2016-03356
082 _ _ |a 540
100 1 _ |a Vinod Chandran, C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li $_{1+ x}$ Al $_{x}$ Ti $_{2– x}$ (PO 4 ) $_{3}$ (0.0 ≤  x  ≤ 1.0)
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467200565_3584
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The local structure and mobility of lithium ions of the NASICON-type ionic conductor Li1+xAlxTi2–x(PO4)3 (with x = 0.0, 0.1, 0.2, 0.35, 0.5, 0.7 and 1.0), synthesized using conventional solid-state reaction route have been studied with solid-state nuclear magnetic resonance (NMR) techniques. 6Li, 7Li, 27Al, and 31P solid-state NMR experiments have been employed to trace the structural changes with varying cation concentration. The structural evolution and the creation of new Al and P environments with changing cation contents were studied by magic-angle spinning (MAS) NMR measurements. 6Li MAS NMR and 27Al triple-quantum MAS (3QMAS) show high-resolution spectra enabling site assignments and phase-purity inspections. The temperature dependences of 7Li NMR spin–lattice relaxation (SLR) rates for different compositions yield important information on the lithium ion mobility in the systems. Li ion jump rates, the activation energies, and the dimensionality of Li diffusion were deduced from the SLR experiments. A vacancy migration model has been proposed for the Li+ ionic diffusion process in pure-phase Li1+xAlxTi2–x(PO4)3 prepared by solid-state reaction. Above a certain threshold value of x (0.5) additional phosphate phases appear that slows down diffusion. This phenomenon can be observed from 6Li exchange spectroscopy. The optimum cation concentration for maximum ionic mobility in the phase-pure Li1+xAlxTi2–x(PO4)3 system can be read directly from the solid-state NMR results.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pristat, Sylke
|0 P:(DE-Juel1)151260
|b 1
|u fzj
700 1 _ |a Witt, Elena
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 3
|u fzj
700 1 _ |a Heitjans, Paul
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1021/acs.jpcc.6b00318
|g Vol. 120, no. 16, p. 8436 - 8442
|0 PERI:(DE-600)2256522-X
|n 16
|p 8436 - 8442
|t The @journal of physical chemistry / C
|v 120
|y 2016
|x 1932-7447
856 4 _ |u https://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/810767/files/acs.jpcc.6b00318.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:810767
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151260
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21