000810769 001__ 810769
000810769 005__ 20240711085658.0
000810769 0247_ $$2doi$$a10.1016/j.electacta.2016.05.010
000810769 0247_ $$2ISSN$$a0013-4686
000810769 0247_ $$2ISSN$$a1873-3859
000810769 0247_ $$2WOS$$aWOS:000377545300004
000810769 037__ $$aFZJ-2016-03358
000810769 082__ $$a540
000810769 1001_ $$0P:(DE-HGF)0$$aElumeeva, Karina$$b0
000810769 245__ $$aPerovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes
000810769 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000810769 3367_ $$2DRIVER$$aarticle
000810769 3367_ $$2DataCite$$aOutput Types/Journal article
000810769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467199511_3577
000810769 3367_ $$2BibTeX$$aARTICLE
000810769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810769 3367_ $$00$$2EndNote$$aJournal Article
000810769 520__ $$aDue to the high cost of precious metal-based electrocatalysts for oxygen reduction and oxygen evolution, the development of alternative low cost and efficient catalysts is of high importance for energy storage and conversion technologies. Although non-precious catalysts that can efficiently catalyze oxygen reduction and oxygen evolution have been developed, electrocatalysts with high bifunctional activity for both oxygen evolution and reduction are needed. Perovskites based on modified lanthanum cobaltite possess significant activity for the oxygen evolution reaction. We describe the synthesis of a bifunctional oxygen electrode with simultaneous activity for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media by direct growth of nitrogen-doped carbon nanotubes on the surface of a perovskite containing Co and Fe by means of chemical vapor deposition. The difference in the overvoltage between ORR (at 1 mA/cm2) and OER (at 10 mA/cm2) was below 880 mV in 0.1 M KOH. The formation of H2O2 during the ORR was reduced by at least three fold when using the bifunctional catalyst as compared to the non-modified perovskite. Long-term durability tests indicate stable performance for at least 37 h during the OER and 23 h during the ORR.
000810769 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000810769 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x1
000810769 588__ $$aDataset connected to CrossRef
000810769 7001_ $$0P:(DE-HGF)0$$aMasa, Justus$$b1
000810769 7001_ $$0P:(DE-Juel1)161419$$aSierau, Jennyfer$$b2
000810769 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b3$$ufzj
000810769 7001_ $$0P:(DE-HGF)0$$aMuhler, Martin$$b4
000810769 7001_ $$0P:(DE-HGF)0$$aSchuhmann, Wolfgang$$b5$$eCorresponding author
000810769 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2016.05.010$$gVol. 208, p. 25 - 32$$p25 - 32$$tElectrochimica acta$$v208$$x0013-4686$$y2016
000810769 8564_ $$uhttps://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.pdf$$yRestricted
000810769 8564_ $$uhttps://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.gif?subformat=icon$$xicon$$yRestricted
000810769 8564_ $$uhttps://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810769 8564_ $$uhttps://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810769 8564_ $$uhttps://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810769 8564_ $$uhttps://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810769 909CO $$ooai:juser.fz-juelich.de:810769$$pVDB
000810769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b3$$kFZJ
000810769 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000810769 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x1
000810769 9141_ $$y2016
000810769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2014
000810769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810769 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810769 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810769 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810769 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810769 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810769 920__ $$lyes
000810769 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000810769 980__ $$ajournal
000810769 980__ $$aVDB
000810769 980__ $$aUNRESTRICTED
000810769 980__ $$aI:(DE-Juel1)IEK-1-20101013
000810769 981__ $$aI:(DE-Juel1)IMD-2-20101013