001     810769
005     20240711085658.0
024 7 _ |a 10.1016/j.electacta.2016.05.010
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000377545300004
|2 WOS
037 _ _ |a FZJ-2016-03358
082 _ _ |a 540
100 1 _ |a Elumeeva, Karina
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467199511_3577
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to the high cost of precious metal-based electrocatalysts for oxygen reduction and oxygen evolution, the development of alternative low cost and efficient catalysts is of high importance for energy storage and conversion technologies. Although non-precious catalysts that can efficiently catalyze oxygen reduction and oxygen evolution have been developed, electrocatalysts with high bifunctional activity for both oxygen evolution and reduction are needed. Perovskites based on modified lanthanum cobaltite possess significant activity for the oxygen evolution reaction. We describe the synthesis of a bifunctional oxygen electrode with simultaneous activity for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media by direct growth of nitrogen-doped carbon nanotubes on the surface of a perovskite containing Co and Fe by means of chemical vapor deposition. The difference in the overvoltage between ORR (at 1 mA/cm2) and OER (at 10 mA/cm2) was below 880 mV in 0.1 M KOH. The formation of H2O2 during the ORR was reduced by at least three fold when using the bifunctional catalyst as compared to the non-modified perovskite. Long-term durability tests indicate stable performance for at least 37 h during the OER and 23 h during the ORR.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Masa, Justus
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sierau, Jennyfer
|0 P:(DE-Juel1)161419
|b 2
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 3
|u fzj
700 1 _ |a Muhler, Martin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schuhmann, Wolfgang
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.electacta.2016.05.010
|g Vol. 208, p. 25 - 32
|0 PERI:(DE-600)1483548-4
|p 25 - 32
|t Electrochimica acta
|v 208
|y 2016
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/810769/files/1-s2.0-S001346861631043X-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:810769
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21