000008108 001__ 8108
000008108 005__ 20240708132903.0
000008108 0247_ $$2DOI$$a10.1007/s11666-009-9416-0
000008108 0247_ $$2WOS$$aWOS:000273671500054
000008108 037__ $$aPreJuSER-8108
000008108 041__ $$aeng
000008108 082__ $$a670
000008108 084__ $$2WoS$$aMaterials Science, Coatings & Films
000008108 1001_ $$0P:(DE-Juel1)129633$$aMauer, G.$$b0$$uFZJ
000008108 245__ $$aThin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure
000008108 260__ $$aBoston, Mass.$$bSpringer$$c2010
000008108 300__ $$a
000008108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008108 3367_ $$2DataCite$$aOutput Types/Journal article
000008108 3367_ $$00$$2EndNote$$aJournal Article
000008108 3367_ $$2BibTeX$$aARTICLE
000008108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008108 3367_ $$2DRIVER$$aarticle
000008108 440_0 $$012482$$aJournal of Thermal Spray Technology$$v19$$x1059-9630$$y1
000008108 500__ $$aRecord converted from VDB: 12.11.2012
000008108 520__ $$aThe very low pressure plasma spray (VLPPS) process operates at a pressure range of approximately 100 Pa. At this pressure, the plasma jet interaction with the surrounding atmosphere is very weak. Thus, the plasma velocity is almost constant over a large distance from the nozzle exit. Furthermore, at these low pressures the collision frequency is distinctly reduced and the mean free path is strongly increased. As a consequence, at low pressure the specific enthalpy of the plasma is substantially higher, but at lower density. These particular plasma characteristics offer enhanced possibilities to spray thin and dense ceramics compared to conventional processes which operate in the pressure range between 5 and 20 kPa. This paper presents some examples of gas-tight and electrically insulating coatings with low thicknesses < 50 mu m for solid oxide fuel cell applications. Furthermore, plasma spraying of oxygen conducting membrane materials such as perovskites is discussed.
000008108 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000008108 588__ $$aDataset connected to Web of Science
000008108 650_7 $$2WoSType$$aJ
000008108 65320 $$2Author$$aAl-Mg-spinel
000008108 65320 $$2Author$$agas separation
000008108 65320 $$2Author$$ainsulating layer
000008108 65320 $$2Author$$alow pressure plasma spraying (LPPS)
000008108 65320 $$2Author$$amembrane
000008108 65320 $$2Author$$aperovskite
000008108 65320 $$2Author$$aSOFC
000008108 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b1$$uFZJ
000008108 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b2$$uFZJ
000008108 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-009-9416-0$$gVol. 19$$q19$$tJournal of thermal spray technology$$v19$$x1059-9630$$y2010
000008108 8567_ $$uhttp://dx.doi.org/10.1007/s11666-009-9416-0
000008108 909CO $$ooai:juser.fz-juelich.de:8108$$pVDB
000008108 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000008108 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000008108 9141_ $$y2010
000008108 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008108 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000008108 970__ $$aVDB:(DE-Juel1)116992
000008108 980__ $$aVDB
000008108 980__ $$aConvertedRecord
000008108 980__ $$ajournal
000008108 980__ $$aI:(DE-Juel1)IEK-1-20101013
000008108 980__ $$aUNRESTRICTED
000008108 981__ $$aI:(DE-Juel1)IMD-2-20101013
000008108 981__ $$aI:(DE-Juel1)IEK-1-20101013