001     8108
005     20240708132903.0
024 7 _ |2 DOI
|a 10.1007/s11666-009-9416-0
024 7 _ |2 WOS
|a WOS:000273671500054
037 _ _ |a PreJuSER-8108
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
100 1 _ |a Mauer, G.
|b 0
|u FZJ
|0 P:(DE-Juel1)129633
245 _ _ |a Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure
260 _ _ |a Boston, Mass.
|b Springer
|c 2010
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Thermal Spray Technology
|x 1059-9630
|0 12482
|y 1
|v 19
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The very low pressure plasma spray (VLPPS) process operates at a pressure range of approximately 100 Pa. At this pressure, the plasma jet interaction with the surrounding atmosphere is very weak. Thus, the plasma velocity is almost constant over a large distance from the nozzle exit. Furthermore, at these low pressures the collision frequency is distinctly reduced and the mean free path is strongly increased. As a consequence, at low pressure the specific enthalpy of the plasma is substantially higher, but at lower density. These particular plasma characteristics offer enhanced possibilities to spray thin and dense ceramics compared to conventional processes which operate in the pressure range between 5 and 20 kPa. This paper presents some examples of gas-tight and electrically insulating coatings with low thicknesses < 50 mu m for solid oxide fuel cell applications. Furthermore, plasma spraying of oxygen conducting membrane materials such as perovskites is discussed.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Al-Mg-spinel
653 2 0 |2 Author
|a gas separation
653 2 0 |2 Author
|a insulating layer
653 2 0 |2 Author
|a low pressure plasma spraying (LPPS)
653 2 0 |2 Author
|a membrane
653 2 0 |2 Author
|a perovskite
653 2 0 |2 Author
|a SOFC
700 1 _ |a Vaßen, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)129670
700 1 _ |a Stöver, D.
|b 2
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1007/s11666-009-9416-0
|g Vol. 19
|q 19
|0 PERI:(DE-600)2047715-6
|t Journal of thermal spray technology
|v 19
|y 2010
|x 1059-9630
856 7 _ |u http://dx.doi.org/10.1007/s11666-009-9416-0
909 C O |o oai:juser.fz-juelich.de:8108
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB809
|x 0
970 _ _ |a VDB:(DE-Juel1)116992
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21