Home > Publications database > Mjo-related intraseasonal variation of gravity waves in the southern hemisphere tropical stratosphere revealed by high-resolution airs observations > print |
001 | 810804 | ||
005 | 20210129223541.0 | ||
024 | 7 | _ | |2 doi |a 10.1002/2015JD024463 |
024 | 7 | _ | |2 ISSN |a 0148-0227 |
024 | 7 | _ | |2 ISSN |a 2156-2202 |
024 | 7 | _ | |2 ISSN |a 2169-897X |
024 | 7 | _ | |2 ISSN |a 2169-8996 |
024 | 7 | _ | |2 WOS |a WOS:000380730500009 |
024 | 7 | _ | |2 Handle |a 2128/16089 |
037 | _ | _ | |a FZJ-2016-03387 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Tsuchiya, Chikara |b 0 |
245 | _ | _ | |a Mjo-related intraseasonal variation of gravity waves in the southern hemisphere tropical stratosphere revealed by high-resolution airs observations |
260 | _ | _ | |a Hoboken, NJ |b Wiley |c 2016 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1512380839_12596 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a The intraseasonal variability of gravity waves (GWs) in the austral summer middle stratosphere was examined using dedicated high-resolution temperature retrieval from the Atmospheric Infrared Sounder data. Composite maps were made of stratospheric GW temperature variances, large-scale zonal winds around the tropopause, and precipitation based on the real-time multivariate Madden-Julian Oscillation (MJO) index. Regional distributions of these quantities are synchronized with the MJO: The GW variances are larger for stronger precipitation, and for more strongly westward wind around the tropopause at a given precipitation. These results suggest that the GWs observed by AIRS in the stratosphere originate from convection. Moreover, it is shown that the zonal wind around the tropopause likely controls the GW propagation into the stratosphere by a critical level filtering mechanism and/or the GW generation by an obstacle source effect. This means that the MJO can modulate the middle atmospheric circulation by regulating the GWs in two ways, namely, generation and propagation. |
536 | _ | _ | |0 G:(DE-HGF)POF3-511 |a 511 - Computational Science and Mathematical Methods (POF3-511) |c POF3-511 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Sato, Kaoru |b 1 |e Corresponding author |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Alexander, M. Joan |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)129125 |a Hoffmann, Lars |b 3 |
773 | _ | _ | |0 PERI:(DE-600)2016800-7 |a 10.1002/2015JD024463 |n 13 |p 7641–7651 |t Journal of geophysical research / Atmospheres |v 121 |x 2169-897X |y 2016 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:810804 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129125 |a Forschungszentrum Jülich |b 3 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-511 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |v Computational Science and Mathematical Methods |x 0 |l Supercomputing & Big Data |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b J GEOPHYS RES : 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|