001     810804
005     20210129223541.0
024 7 _ |2 doi
|a 10.1002/2015JD024463
024 7 _ |2 ISSN
|a 0148-0227
024 7 _ |2 ISSN
|a 2156-2202
024 7 _ |2 ISSN
|a 2169-897X
024 7 _ |2 ISSN
|a 2169-8996
024 7 _ |2 WOS
|a WOS:000380730500009
024 7 _ |2 Handle
|a 2128/16089
037 _ _ |a FZJ-2016-03387
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Tsuchiya, Chikara
|b 0
245 _ _ |a Mjo-related intraseasonal variation of gravity waves in the southern hemisphere tropical stratosphere revealed by high-resolution airs observations
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512380839_12596
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The intraseasonal variability of gravity waves (GWs) in the austral summer middle stratosphere was examined using dedicated high-resolution temperature retrieval from the Atmospheric Infrared Sounder data. Composite maps were made of stratospheric GW temperature variances, large-scale zonal winds around the tropopause, and precipitation based on the real-time multivariate Madden-Julian Oscillation (MJO) index. Regional distributions of these quantities are synchronized with the MJO: The GW variances are larger for stronger precipitation, and for more strongly westward wind around the tropopause at a given precipitation. These results suggest that the GWs observed by AIRS in the stratosphere originate from convection. Moreover, it is shown that the zonal wind around the tropopause likely controls the GW propagation into the stratosphere by a critical level filtering mechanism and/or the GW generation by an obstacle source effect. This means that the MJO can modulate the middle atmospheric circulation by regulating the GWs in two ways, namely, generation and propagation.
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Sato, Kaoru
|b 1
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Alexander, M. Joan
|b 2
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, Lars
|b 3
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1002/2015JD024463
|n 13
|p 7641–7651
|t Journal of geophysical research / Atmospheres
|v 121
|x 2169-897X
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810804/files/Tsuchiya_et_al-2016-Journal_of_Geophysical_Research__Atmospheres-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:810804
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 0
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J GEOPHYS RES : 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21