000810832 001__ 810832
000810832 005__ 20220930130101.0
000810832 0247_ $$2doi$$a10.1063/1.4954714
000810832 0247_ $$2ISSN$$a0003-6951
000810832 0247_ $$2ISSN$$a1077-3118
000810832 0247_ $$2WOS$$aWOS:000379039900026
000810832 0247_ $$2Handle$$a2128/17303
000810832 0247_ $$2altmetric$$aaltmetric:9045374
000810832 037__ $$aFZJ-2016-03415
000810832 082__ $$a530
000810832 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, C.$$b0$$ufzj
000810832 245__ $$aHafnium carbide formation in oxygen deficient hafnium oxide thin films
000810832 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2016
000810832 3367_ $$2DRIVER$$aarticle
000810832 3367_ $$2DataCite$$aOutput Types/Journal article
000810832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467093144_5430
000810832 3367_ $$2BibTeX$$aARTICLE
000810832 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810832 3367_ $$00$$2EndNote$$aJournal Article
000810832 520__ $$aOn highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2− x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.
000810832 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000810832 588__ $$aDataset connected to CrossRef
000810832 7001_ $$0P:(DE-HGF)0$$aHildebrandt, E.$$b1
000810832 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b2$$ufzj
000810832 7001_ $$00000-0002-8644-1303$$aSharath, S. U.$$b3
000810832 7001_ $$0P:(DE-HGF)0$$aKurian, J.$$b4
000810832 7001_ $$0P:(DE-HGF)0$$aKomissinskiy, P.$$b5
000810832 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b6
000810832 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7$$ufzj
000810832 7001_ $$0P:(DE-HGF)0$$aAlff, L.$$b8
000810832 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4954714$$gVol. 108, no. 25, p. 252903 -$$n25$$p252903 -$$tApplied physics letters$$v108$$x1077-3118$$y2016
000810832 8564_ $$uhttps://juser.fz-juelich.de/record/810832/files/1.4954714.pdf$$yOpenAccess
000810832 8564_ $$uhttps://juser.fz-juelich.de/record/810832/files/1.4954714.gif?subformat=icon$$xicon$$yOpenAccess
000810832 8564_ $$uhttps://juser.fz-juelich.de/record/810832/files/1.4954714.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810832 8564_ $$uhttps://juser.fz-juelich.de/record/810832/files/1.4954714.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000810832 8564_ $$uhttps://juser.fz-juelich.de/record/810832/files/1.4954714.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810832 8767_ $$92016-06-23$$d2016-06-23$$eHybrid-OA$$jZahlung erfolgt$$lKK: Heinen
000810832 909CO $$ooai:juser.fz-juelich.de:810832$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000810832 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810832 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2014
000810832 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810832 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810832 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810832 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810832 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810832 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810832 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810832 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810832 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810832 9141_ $$y2016
000810832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b6$$kFZJ
000810832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich$$b2$$kFZJ
000810832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b6$$kFZJ
000810832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b7$$kFZJ
000810832 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000810832 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000810832 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000810832 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000810832 980__ $$ajournal
000810832 980__ $$aVDB
000810832 980__ $$aUNRESTRICTED
000810832 980__ $$aI:(DE-Juel1)PGI-7-20110106
000810832 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000810832 980__ $$aI:(DE-82)080009_20140620
000810832 980__ $$aAPC
000810832 9801_ $$aAPC
000810832 9801_ $$aFullTexts
000810832 981__ $$aI:(DE-Juel1)ZEA-3-20090406