001     810832
005     20220930130101.0
024 7 _ |2 doi
|a 10.1063/1.4954714
024 7 _ |2 ISSN
|a 0003-6951
024 7 _ |2 ISSN
|a 1077-3118
024 7 _ |2 WOS
|a WOS:000379039900026
024 7 _ |2 Handle
|a 2128/17303
024 7 _ |a altmetric:9045374
|2 altmetric
037 _ _ |a FZJ-2016-03415
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)142194
|a Rodenbücher, C.
|b 0
|u fzj
245 _ _ |a Hafnium carbide formation in oxygen deficient hafnium oxide thin films
260 _ _ |a Melville, NY
|b American Inst. of Physics
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1467093144_5430
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2− x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Hildebrandt, E.
|b 1
700 1 _ |0 P:(DE-Juel1)130993
|a Szot, K.
|b 2
|u fzj
700 1 _ |0 0000-0002-8644-1303
|a Sharath, S. U.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kurian, J.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Komissinskiy, P.
|b 5
700 1 _ |0 P:(DE-Juel1)133840
|a Breuer, Uwe
|b 6
700 1 _ |0 P:(DE-Juel1)131022
|a Waser, R.
|b 7
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Alff, L.
|b 8
773 _ _ |0 PERI:(DE-600)1469436-0
|a 10.1063/1.4954714
|g Vol. 108, no. 25, p. 252903 -
|n 25
|p 252903 -
|t Applied physics letters
|v 108
|x 1077-3118
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/810832/files/1.4954714.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810832/files/1.4954714.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810832/files/1.4954714.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810832/files/1.4954714.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810832/files/1.4954714.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:810832
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133840
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130993
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133840
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131022
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b APPL PHYS LETT : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21