001     810837
005     20240712112840.0
024 7 _ |a 10.1016/j.jmr.2016.06.003
|2 doi
024 7 _ |a 0022-2364
|2 ISSN
024 7 _ |a 1090-7807
|2 ISSN
024 7 _ |a 1096-0856
|2 ISSN
024 7 _ |a 1557-8968
|2 ISSN
024 7 _ |a WOS:000381239900019
|2 WOS
024 7 _ |a altmetric:8948867
|2 altmetric
024 7 _ |a pmid:27323280
|2 pmid
037 _ _ |a FZJ-2016-03420
082 _ _ |a 550
100 1 _ |a Niemöller, Arvid
|0 P:(DE-Juel1)166446
|b 0
|u fzj
245 _ _ |a 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467093624_5432
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140 °C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Kayser, Steffen
|0 P:(DE-Juel1)164222
|b 2
|u fzj
700 1 _ |a Lin, Yu
|0 P:(DE-Juel1)165816
|b 3
|u fzj
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 4
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 5
|u fzj
773 _ _ |a 10.1016/j.jmr.2016.06.003
|g Vol. 269, p. 157 - 161
|0 PERI:(DE-600)1469665-4
|p 157 - 161
|t Journal of magnetic resonance
|v 269
|y 2016
|x 1090-7807
856 4 _ |u https://juser.fz-juelich.de/record/810837/files/1-s2.0-S1090780716300799-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/810837/files/1-s2.0-S1090780716300799-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/810837/files/1-s2.0-S1090780716300799-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/810837/files/1-s2.0-S1090780716300799-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/810837/files/1-s2.0-S1090780716300799-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/810837/files/1-s2.0-S1090780716300799-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:810837
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166446
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164222
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165816
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MAGN RESON : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IEK-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21