000810840 001__ 810840
000810840 005__ 20240712112827.0
000810840 0247_ $$2doi$$a10.1002/anie.201602142
000810840 0247_ $$2ISSN$$a0044-8249
000810840 0247_ $$2ISSN$$a0570-0833
000810840 0247_ $$2ISSN$$a1433-7851
000810840 0247_ $$2ISSN$$a1521-3773
000810840 0247_ $$2WOS$$aWOS:000377921400015
000810840 0247_ $$2altmetric$$aaltmetric:7138021
000810840 0247_ $$2pmid$$apmid:27145532
000810840 037__ $$aFZJ-2016-03423
000810840 082__ $$a540
000810840 1001_ $$00000-0002-9175-2616$$aWandt, Johannes$$b0$$eCorresponding author
000810840 245__ $$aSinglet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery
000810840 260__ $$aWeinheim$$bWiley-VCH$$c2016
000810840 3367_ $$2DRIVER$$aarticle
000810840 3367_ $$2DataCite$$aOutput Types/Journal article
000810840 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467093811_5435
000810840 3367_ $$2BibTeX$$aARTICLE
000810840 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810840 3367_ $$00$$2EndNote$$aJournal Article
000810840 520__ $$aAprotic lithium–oxygen (Li–O2) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen (1Δg) is formed upon Li2O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li–O2 cells.
000810840 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000810840 588__ $$aDataset connected to CrossRef
000810840 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1$$eCorresponding author$$ufzj
000810840 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b2$$ufzj
000810840 7001_ $$0P:(DE-HGF)0$$aGasteiger, Hubert A.$$b3
000810840 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
000810840 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.201602142$$gVol. 55, no. 24, p. 6892 - 6895$$n24$$p6892 - 6895$$tAngewandte Chemie / International edition$$v55$$x1433-7851$$y2016
000810840 8564_ $$uhttps://juser.fz-juelich.de/record/810840/files/Wandt_et_al-2016-Angewandte_Chemie_International_Edition.pdf$$yRestricted
000810840 8564_ $$uhttps://juser.fz-juelich.de/record/810840/files/Wandt_et_al-2016-Angewandte_Chemie_International_Edition.gif?subformat=icon$$xicon$$yRestricted
000810840 8564_ $$uhttps://juser.fz-juelich.de/record/810840/files/Wandt_et_al-2016-Angewandte_Chemie_International_Edition.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810840 8564_ $$uhttps://juser.fz-juelich.de/record/810840/files/Wandt_et_al-2016-Angewandte_Chemie_International_Edition.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810840 8564_ $$uhttps://juser.fz-juelich.de/record/810840/files/Wandt_et_al-2016-Angewandte_Chemie_International_Edition.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810840 8564_ $$uhttps://juser.fz-juelich.de/record/810840/files/Wandt_et_al-2016-Angewandte_Chemie_International_Edition.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810840 909CO $$ooai:juser.fz-juelich.de:810840$$pVDB
000810840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b1$$kFZJ
000810840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b2$$kFZJ
000810840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
000810840 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000810840 9141_ $$y2016
000810840 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810840 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000810840 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2014
000810840 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANGEW CHEM INT EDIT : 2014
000810840 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810840 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810840 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810840 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810840 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810840 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810840 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810840 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810840 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810840 920__ $$lyes
000810840 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000810840 980__ $$ajournal
000810840 980__ $$aVDB
000810840 980__ $$aUNRESTRICTED
000810840 980__ $$aI:(DE-Juel1)IEK-9-20110218
000810840 981__ $$aI:(DE-Juel1)IET-1-20110218