000810841 001__ 810841
000810841 005__ 20240711101546.0
000810841 0247_ $$2doi$$a10.1016/j.jpowsour.2016.11.118
000810841 0247_ $$2ISSN$$a0378-7753
000810841 0247_ $$2ISSN$$a1873-2755
000810841 0247_ $$2WOS$$aWOS:000396186300006
000810841 037__ $$aFZJ-2016-03424
000810841 082__ $$a620
000810841 1001_ $$0P:(DE-Juel1)151295$$aRakousky, Christoph$$b0
000810841 245__ $$aPolymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power
000810841 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000810841 3367_ $$2DRIVER$$aarticle
000810841 3367_ $$2DataCite$$aOutput Types/Journal article
000810841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484489456_25257
000810841 3367_ $$2BibTeX$$aARTICLE
000810841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810841 3367_ $$00$$2EndNote$$aJournal Article
000810841 520__ $$aPolymer electrolyte membrane (PEM) water electrolysis generates ‘green’ hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm−2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm−2). Hereby, constant operation at 2 A cm−2 led to the highest degradation rate (194 μV h−1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).
000810841 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000810841 588__ $$aDataset connected to CrossRef
000810841 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b1
000810841 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b2
000810841 7001_ $$0P:(DE-Juel1)166247$$aKuhri, Susanne$$b3
000810841 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b4$$eCorresponding author
000810841 7001_ $$0P:(DE-Juel1)128533$$aLüke, Wiebke$$b5
000810841 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6
000810841 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2016.11.118$$gVol. 342, p. 38 - 47$$p38 - 47$$tJournal of power sources$$v342$$x0378-7753$$y2017
000810841 8564_ $$uhttps://juser.fz-juelich.de/record/810841/files/1-s2.0-S0378775316316858-main.pdf$$yRestricted
000810841 8564_ $$uhttps://juser.fz-juelich.de/record/810841/files/1-s2.0-S0378775316316858-main.gif?subformat=icon$$xicon$$yRestricted
000810841 8564_ $$uhttps://juser.fz-juelich.de/record/810841/files/1-s2.0-S0378775316316858-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810841 8564_ $$uhttps://juser.fz-juelich.de/record/810841/files/1-s2.0-S0378775316316858-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810841 8564_ $$uhttps://juser.fz-juelich.de/record/810841/files/1-s2.0-S0378775316316858-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810841 8564_ $$uhttps://juser.fz-juelich.de/record/810841/files/1-s2.0-S0378775316316858-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810841 909CO $$ooai:juser.fz-juelich.de:810841$$pVDB
000810841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151295$$aForschungszentrum Jülich$$b0$$kFZJ
000810841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b1$$kFZJ
000810841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b2$$kFZJ
000810841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166247$$aForschungszentrum Jülich$$b3$$kFZJ
000810841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b4$$kFZJ
000810841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128533$$aForschungszentrum Jülich$$b5$$kFZJ
000810841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000810841 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000810841 9141_ $$y2017
000810841 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2014
000810841 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810841 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810841 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810841 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810841 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810841 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810841 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810841 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810841 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810841 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2014
000810841 920__ $$lyes
000810841 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000810841 980__ $$ajournal
000810841 980__ $$aVDB
000810841 980__ $$aI:(DE-Juel1)IEK-3-20101013
000810841 980__ $$aUNRESTRICTED
000810841 981__ $$aI:(DE-Juel1)ICE-2-20101013