000810844 001__ 810844
000810844 005__ 20240712112828.0
000810844 0247_ $$2doi$$a10.1016/j.apenergy.2016.04.103
000810844 0247_ $$2ISSN$$a0306-2619
000810844 0247_ $$2ISSN$$a1872-9118
000810844 0247_ $$2Handle$$a2128/11656
000810844 0247_ $$2WOS$$aWOS:000379370800011
000810844 037__ $$aFZJ-2016-03427
000810844 041__ $$aEnglish
000810844 082__ $$a620
000810844 1001_ $$0P:(DE-HGF)0$$aBeelen, H. P. G. J.$$b0$$eCorresponding author
000810844 245__ $$aA comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries
000810844 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000810844 3367_ $$2DRIVER$$aarticle
000810844 3367_ $$2DataCite$$aOutput Types/Journal article
000810844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467094096_5434
000810844 3367_ $$2BibTeX$$aARTICLE
000810844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810844 3367_ $$00$$2EndNote$$aJournal Article
000810844 520__ $$aIn order to guarantee safe and proper use of Lithium-ion batteries during operation, an accurate estimate of the battery temperature is of paramount importance. Electrochemical Impedance Spectroscopy (EIS) can be used to estimate the battery temperature and several EIS-based temperature estimation methods have been proposed in the literature. In this paper, we argue that all existing EIS-based methods implicitly distinguish two steps: experiment design and parameter estimation. The former step consists of choosing the excitation frequency and the latter step consists of estimating the battery temperature based on the measured impedance resulting from the chosen excitation. By distinguishing these steps and by performing Monte-Carlo simulations, all existing methods are compared in terms of accuracy (i.e., mean-square error) of the temperature estimate. The results of the comparison show that, due to different choices in the two steps, significant differences in accuracy of the estimate exist. More importantly, by jointly selecting the parameters of the experiment-design and parameter-estimation step, a more-accurate temperature estimate can be obtained. In case of an unknown State-of-Charge, this novel method estimates the temperature with an average absolute bias of View the MathML sourceC and an average standard deviation of View the MathML sourceC using a single impedance measurement for the battery under consideration.
000810844 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000810844 588__ $$aDataset connected to CrossRef
000810844 7001_ $$0P:(DE-HGF)0$$aRaijmakers, L. H. J.$$b1
000810844 7001_ $$0P:(DE-HGF)0$$aDonkers, M. C. F.$$b2
000810844 7001_ $$0P:(DE-Juel1)165918$$aNotten, P. H. L.$$b3$$ufzj
000810844 7001_ $$0P:(DE-HGF)0$$aBergveld, H. J.$$b4
000810844 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2016.04.103$$gVol. 175, p. 128 - 140$$p128 - 140$$tApplied energy$$v175$$x0306-2619$$y2016
000810844 8564_ $$uhttps://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.pdf$$yOpenAccess
000810844 8564_ $$uhttps://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.gif?subformat=icon$$xicon$$yOpenAccess
000810844 8564_ $$uhttps://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810844 8564_ $$uhttps://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810844 8564_ $$uhttps://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810844 8564_ $$uhttps://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810844 909CO $$ooai:juser.fz-juelich.de:810844$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000810844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b3$$kFZJ
000810844 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000810844 9141_ $$y2016
000810844 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810844 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810844 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000810844 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2014
000810844 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810844 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810844 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810844 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810844 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2014
000810844 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810844 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810844 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810844 920__ $$lyes
000810844 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000810844 9801_ $$aFullTexts
000810844 980__ $$ajournal
000810844 980__ $$aVDB
000810844 980__ $$aUNRESTRICTED
000810844 980__ $$aI:(DE-Juel1)IEK-9-20110218
000810844 981__ $$aI:(DE-Juel1)IET-1-20110218