001     810844
005     20240712112828.0
024 7 _ |a 10.1016/j.apenergy.2016.04.103
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a 2128/11656
|2 Handle
024 7 _ |a WOS:000379370800011
|2 WOS
037 _ _ |a FZJ-2016-03427
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Beelen, H. P. G. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467094096_5434
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to guarantee safe and proper use of Lithium-ion batteries during operation, an accurate estimate of the battery temperature is of paramount importance. Electrochemical Impedance Spectroscopy (EIS) can be used to estimate the battery temperature and several EIS-based temperature estimation methods have been proposed in the literature. In this paper, we argue that all existing EIS-based methods implicitly distinguish two steps: experiment design and parameter estimation. The former step consists of choosing the excitation frequency and the latter step consists of estimating the battery temperature based on the measured impedance resulting from the chosen excitation. By distinguishing these steps and by performing Monte-Carlo simulations, all existing methods are compared in terms of accuracy (i.e., mean-square error) of the temperature estimate. The results of the comparison show that, due to different choices in the two steps, significant differences in accuracy of the estimate exist. More importantly, by jointly selecting the parameters of the experiment-design and parameter-estimation step, a more-accurate temperature estimate can be obtained. In case of an unknown State-of-Charge, this novel method estimates the temperature with an average absolute bias of View the MathML sourceC and an average standard deviation of View the MathML sourceC using a single impedance measurement for the battery under consideration.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Raijmakers, L. H. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Donkers, M. C. F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Notten, P. H. L.
|0 P:(DE-Juel1)165918
|b 3
|u fzj
700 1 _ |a Bergveld, H. J.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.apenergy.2016.04.103
|g Vol. 175, p. 128 - 140
|0 PERI:(DE-600)2000772-3
|p 128 - 140
|t Applied energy
|v 175
|y 2016
|x 0306-2619
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/810844/files/1-s2.0-S0306261916305621-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:810844
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21