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a b s t r a c t

In order to guarantee safe and proper use of Lithium-ion batteries during operation, an accurate estimate

of the battery temperature is of paramount importance. Electrochemical Impedance Spectroscopy (EIS)

can be used to estimate the battery temperature and several EIS-based temperature estimation methods

have been proposed in the literature. In this paper, we argue that all existing EIS-based methods implic-

itly distinguish two steps: experiment design and parameter estimation. The former step consists of

choosing the excitation frequency and the latter step consists of estimating the battery temperature

based on the measured impedance resulting from the chosen excitation. By distinguishing these steps

and by performing Monte-Carlo simulations, all existing methods are compared in terms of accuracy

(i.e., mean-square error) of the temperature estimate. The results of the comparison show that, due to

different choices in the two steps, significant differences in accuracy of the estimate exist. More impor-

tantly, by jointly selecting the parameters of the experiment-design and parameter-estimation step, a

more-accurate temperature estimate can be obtained. In case of an unknown State-of-Charge, this novel

method estimates the temperature with an average absolute bias of 0:4 �C and an average standard devi-

ation of 0:7 �C using a single impedance measurement for the battery under consideration.

� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Due to properties such as high energy density, Lithium-ion (Li-

ion) batteries are used in various applications such as battery packs

in (hybrid) electric vehicles and in mobile phones. For safety and

control purposes, temperature estimation of Li-ion batteries is of

vital importance. For example, high battery temperatures can

induce thermal runaway, which may cause fire or explosions,

and accelerate ageing of the battery, thus reducing its lifetime

and performance [2,3]. A relatively new field of temperature esti-

mation methods is based on Electrochemical Impedance Spec-

troscopy (EIS), where a temperature relation is inferred from the

electrochemical battery impedance. Using EIS for temperature esti-

mation is often referred to as ‘‘sensorless temperature estimation”,

since no intrusive or surface-mounted temperature sensors are

needed. Another advantage is that the average1 battery tempera-

ture is gauged. Therefore, there is no heat transfer delay due to the

http://dx.doi.org/10.1016/j.apenergy.2016.04.103
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(E-COSM’15) [1].
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1 Note that, due to temperature gradients and the non-linear relation between

battery impedance and battery temperature, the EIS-based average temperature,

which can be interpreted as a weighted average, is not necessarily equal to the actual

average temperature. However, these average temperatures will typically be close in

value [4].
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thermal mass of the battery as with measurements of the surface

temperature.

A number of studies have presented EIS-based temperature esti-

mation methods and expansions or improvements of these meth-

ods [4–14]. It can be argued that the presented methods can be

broken down into two components: how to choose the excitation

signal for the battery and how to estimate the battery temperature

based on the measured output resulting from the chosen excitation

signal. In Fig. 1, a general block diagram is shown that can be used

to describe existing EIS-based temperature estimation methods.

Here, the frequency f defines the excitation signal and themeasured

output Z is the battery impedance. Choosing the excitation fre-

quency f is referred to as experiment design, whereas estimating

the battery temperature based on the measured impedance Z is

referred to as parameter estimation. The real battery temperature

and estimated battery temperature are denoted by T and T̂ , respec-

tively, and v denotes measurement noise on the measured impe-

dance Z. Furthermore, a battery impedance model is employed to

establish a relation between the measured battery impedance Z

and the battery temperature T. In Fig. 1, this is captured by themod-

elled battery impedance Ẑ, which is computed by using a battery

impedance model and the excitation frequency f.

In general, the modelled battery impedance Ẑ is compared to

the measured battery impedance Z, using some established tem-

perature relation, in order to obtain a temperature estimate T̂ . This

comparison is defined by the parameter-estimation component by

means of settings given by m. For example, one existing estimation

method [7] relates the real part of the battery impedance Z to the

battery temperature T. Therefore, the parameter m induces the set-

ting ‘‘real part of Z” on the parameter-estimation block and the bat-

tery temperature T is estimated in the form of T̂ by comparing the

real part of the measured battery impedance Z to the real part of

the modelled battery impedance Ẑ at the excitation frequency f.

The settings for experiment design p should yield a certain fre-

quency f that causes the output Z to have the right information

for the parameter estimation to give accurate results. For example,

a sensitivity analysis in [7] reveals that a high variation of impe-

dance Z with temperature T can be found for low frequencies f.

However, also a high variation of the impedance Z with the

State-of-Charge (SoC) is found in this frequency region. The combi-

nation of both sensitivity analyses can be seen as choosing the

experiment-design parameter p, which resulted in [7] in a compro-

mise in the excitation frequency f. Also, p can hold information as

to how many measurements are taken and averaged in order to

obtain a temperature estimate.

In this paper, we compare and analyse the accuracy of

impedance-based temperature estimation and propose a method

that yields a more accurate temperature estimate, when compared

to the existing methods. To do so, we will analyse the sensitivity of

the battery impedance with respect to temperature and SoC. Also,

we will carefully investigate both experiment design and parameter

estimation of impedance-based temperature estimation by intro-

ducing several parameters, and explain how existing methods

can be considered as having certain choices for these parameters.

A Monte-Carlo approach will be taken to analyse how different

choices in experiment design and parameter estimation will lead to

a different accuracy of T̂. This accuracy is defined as the Mean-

Square Estimation error (MSE) of the temperature estimate T̂ ,

where the MSE can be broken down into bias (i.e., systematic error)

and standard deviation (i.e., random error) of the temperature esti-

mate T̂ (compared to the real battery temperature T). This will

allow for a thorough comparison of the achieved estimation accu-

racy of the state-of-the-art impedance-based temperature estima-

tion methods. Moreover, the analysis allows for synthesising

parameters p and m that yield a more accurate temperature esti-

mate (in terms of a smaller MSE value). As a basis for the compar-

ison, analysis and synthesis, a data-based approach is chosen. No

prior knowledge about batteries or battery modelling is assumed

and therefore this paper focuses on the estimation problem instead

of battery modelling and related issues. This makes the framework

widely applicable for data-based battery analysis which is an addi-

tion to the work in [14], where polynomial modelling is chosen and

where a comparison of existing methods is not included. The work

presented in this paper extends on preliminary work [1] by per-

forming extensive sensitivity analyses of the battery impedance

with respect to temperature and SoC, by giving a more thorough

analysis of temperature estimation, a more extensive comparison

of estimation methods as well as by pointing to interesting exten-

sions of this work.

The organisation of the paper is as follows. Some theoretical

background is presented in Section 2. Then, the principle of

impedance-based temperature estimation and the proposed

approach for comparison, analysis and synthesis are introduced

in Section 3. Subsequently, Section 4 will give an extensive sensi-

tivity analysis of the battery impedance with respect to tempera-

ture and SoC. The results of this study are presented and

discussed in Section 5 and some possible extensions to this work

are discussed in Section 6. Conclusions are drawn in Section 7.

2. Theoretical background

Let Z 2 C denote a complex number of the form Z ¼ aþ jb

where a; b 2 R and j satisfies j
2 ¼ �1. The real and imaginary parts

of this complex number are denoted by ReðZÞ ¼ a and ImðZÞ ¼ b,

respectively. Furthermore, the complex modulus is given by

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b
2

p

and the argument or phase by argðZÞ ¼ arctan b=að Þ.
Let xi with i 2 f1; . . . ;Ng denote N independent and identically

distributed random variables. Then, the sample mean of x is given

by

Nomenclature

EIS Electrochemical Impedance Spectroscopy
SoC State-of-Charge
MSE Mean-Square Estimation error

SNR Signal-to-Noise Ratio
BMS Battery Management System

Battery
f Z
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p

Experiment
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+
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+

Fig. 1. Top-level block diagram of measurement system.
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MNðxÞ ¼
1

N

X

N

i¼1

xi: ð1Þ

For N ! 1, the sample meanMNðxÞ converges to the expected value

E½x� of x. The sample variance of x is given by

VarNðxÞ ¼
1

N

X

N

i¼1

xi �MNðxÞð Þ xi �MNðxÞð Þ|: ð2Þ

For N ! 1, the sample variance VarNðxÞ converges to the variance

r2ðxÞ ¼ E½ x� E½x�ð Þ x� E½x�ð Þ|� of x, which equals the square of the

standard deviation r. Around the expected value E½x� of a random

variable x, a confidence interval with confidence b such that

x 2 ½x; x� is defined as

P½x 6 E½x� 6 x�P b: ð3Þ

In case the upper bound is given by x ¼ MNðxÞ þ c, and the lower

bound is given by x ¼ MNðxÞ � c, making the length of the confidence

interval to be 2c, then b ¼ 1� VarN½x�=ðNc2Þ. This allows us to calcu-

late the sample size N for a desired confidence interval 2cwith a cer-

tain confidence coefficient b, or to calculate b for a given N.

Furthermore, let Z ¼ gðTÞ denote a non-linear function, where Z

could be the measured impedance in Fig. 1 and gðTÞ could be the

battery model. Then, one way of estimating T is by using a non-

linear regression approach, such as non-linear least squares, which

can be denoted by T̂ ¼ argminTkZ � gðTÞk2 where k � k is any vector

norm. In this paper, we will take the Euclidean norm.

For an uncertain model gðTÞ that is parametrised by parameter

T, a probability distribution PðZjTÞ, and produces observations Z,

the estimate of the parameter T is denoted by T̂. The expected

value of E½T̂� is used to define the bias b and the variance of the esti-

mate. When using only a finite number of observations N, Eqs. (1)

and (2) can be used instead of E½T̂� and the variance based on E½T̂�,
respectively. Then, bias bðT̂Þ and variance VarðT̂Þ are given by

bðT̂Þ ¼ MNðT̂Þ � T and VarðT̂Þ ¼ VarNðT̂Þ; ð4Þ

respectively and the MSE is given by

MSE ¼ bðT̂Þ2 þ VarðT̂Þ: ð5Þ

Finally, complex-valued zero-mean Gaussian noise is denoted by

v ¼ c þ jd, where the vector ½c d�| is a (joint) Gaussian distribution

with zero mean and variance r2.

3. Impedance-based temperature estimation

In this section, an overview of the framework for analysis, com-

parison and synthesis of impedance-based temperature estimation

as presented in [1] will be given. This overview will include the

definition of the battery impedance Z, the relation of Zwith respect

to the battery temperature T and the proposed estimator for accu-

rately estimating T given the aforementioned relation with Z. Fur-

thermore, the framework in [1] will be extended towards the case

where accurate information on the SoC is available. Also, the over-

view of state-of-the-art estimation techniques in [1] will be

updated with recent literature.

3.1. Battery impedance modelling

The battery impedance Z can be interpreted as the battery fre-

quency response, where the battery takes a sinusoidal voltage or

current input with frequency f ¼ x=ð2pÞ, and produces a sinu-

soidal current or voltage output, respectively, with the same fre-

quency. The ratio between input and output can be described as

a (complex) impedance

ZðjxÞ ¼ VðjxÞ
IðjxÞ ; ð6Þ

where the magnitude of the excitation signal should be sufficiently

small in order to guarantee local linearity of the system, yet not too

small to prevent a poor Signal-to-Noise Ratio (SNR). The technique

of obtaining the frequency response of the battery is known as EIS

and is widely used for gathering information about batteries [15–

18]. In this study, EIS measurements are conducted in galvanostatic

mode by superimposing a sinusoidal current with an amplitude of

100
ffiffiffi

2
p

mA on the load current of the battery (whether or not a load

current is present).

As discussed in the introduction, modelling efforts are limited

to defining a data-based model instead of using modelling

approaches such as first-principles modelling or equivalent-

circuit modelling [19,20]. In particular, we model the battery by

a function g : R
4 ! C, that depends on excitation frequency f, tem-

perature T, State-of-Charge (SoC) and other effects w such as bat-

tery ageing and (dis)charge current. If also additive measurement

noise v 2 C, induced by the measurement device, is considered,

the battery impedance is given by

Z ¼ g f ; T; SoC;wð Þ þ v ; ð7Þ

where v is complex-valued zero-mean Gaussian noise as introduced

in the previous section. In this paper, we do not take into account

the dependencies denoted by w and we shall assume w ¼ 0 from

now on. Still, the parameter w can be used to model other depen-

dencies than f ; T and SoC as mentioned above, which can be seen

as an extension on this work without changing the approach pre-

sented in this paper.

Based on the relation in Eq. (7) and EIS measurements, a battery

model can be made, e.g., by storing impedance data in look-up

tables. If the measurement noise v and the SoC are assumed to

be unknown, for simplicity, a model ĝ of the battery impedance Z

is constructed by averaging over SoC and v in order to make the

model independent of these influences. As a result of these

assumptions, the model is given by

ĝ f ; Tð Þ ¼ 1

KM

X

M

j¼1

X

K

i¼1

g f ; T; SoCj; 0
� �

þ v i ð8Þ

for some SoCj 2 ½0;100� and j 2 f1; . . . ;Mg, whereM 2 N is the num-

ber of SoC values at which the battery impedance is measured and

K 2 N is the number of measurements taken per SoC. The choice

and range of SoC values over which is averaged (e.g.

SoC 2 f40;60g) in order to construct an averaging-based model

may depend on the intended application. For example, a battery

used in a charge sustaining setup where the SoC is kept around

50% does not require an accurate model for SoC 2 ½0;100�, instead,
SoC 2 ½40;60�will suffice. In case the SoC is known, e.g., through SoC

estimation [21], ĝ can be redefined to an SoC-dependent model

given by

ĝ f ; T; SoCð Þ ¼ 1

K

X

K

i¼1

g f ; T; SoC;0ð Þ þ v i: ð9Þ

3.2. Temperature estimation

Fig. 1, Eqs. (8) and (9) show that battery temperature estimation

can be broken down into two questions with the joint objective of

obtaining the most accurate temperature estimate T̂: how to deter-

mine the excitation frequency f (or multiple frequencies

f i; i 2 f1; . . . ;Ng) and how to obtain the temperature estimate T̂

from the measured impedance Z for a certain f? Referring back to

Fig. 1, what should p and m be? For answering the first question,

130 H.P.G.J. Beelen et al. / Applied Energy 175 (2016) 128–140



better understanding is needed of the sensitivity of the tempera-

ture estimate with respect to the excitation frequency. This will

eventually allow us to make a comparison of existing EIS-based

estimation methods and it will allow us to devise a more accurate

method. The second question has been answered in [1], resulting in

the estimator for estimating the battery temperature given by

T̂ðf ;N;a; ZÞ ¼ argmin
T

X

N

i¼1

a �g2
1ðf i; T; ZiÞ þ ð1� aÞ �g2

2ðf i; T; ZiÞ; ð10Þ

where N is the number of EIS measurements, f is the vector of exci-

tation frequencies f ¼ f 1; . . . ; f N½ �| with a frequency f i for each EIS

measurement, Z is the vector of measured battery impedance values

Z ¼ Z1; . . . ; ZN½ �| obtained through EIS, and a 2 ½0; 1� denotes a selec-

tor variable. In Cartesian coordinates, �g1 and �g2 are given by

�g1ðf i; T; ZiÞ ¼ Re ĝ f i; Tð Þ � Zið Þ ð11aÞ
�g2ðf i; T; ZiÞ ¼ Im ĝ f i; Tð Þ � Zið Þ ð11bÞ

while for polar coordinates, we have

�g1ðf i; T; ZiÞ ¼ arg ĝ f i; Tð Þð Þ � arg Zið Þ ð12aÞ
�g2ðf i; T; ZiÞ ¼ jĝ f i; Tð Þj � jZij: ð12bÞ

Note that the model in Eq. (8) is obtained through averaging a

number of K EIS measurements, and the result from Eq. (10) is

obtained with a number of N EIS measurements using the same

model.

The estimator, given in Eq. (10), uses the characterised temper-

ature T in the battery model ĝðf ; TÞ, at a certain frequency f, as a

decision variable in the minimisation of the difference between

the measured impedance Z and the modelled impedance ĝðf ; TÞ.
At the point where this difference is minimised, the minimiser is

taken to be the battery-temperature estimate T̂ . Furthermore, the

physical interpretation for a ¼ 1 in Eq. (10) in combination with

Eq. (11) is that only ReðZÞ is used in estimating the temperature.

For a ¼ 0, only ImðZÞ is used. In case Eq. (10) is used in combina-

tion with Eq. (12), a ¼ 1 can be interpreted as using only argðZÞ
and a ¼ 0 as using only Zj j.

Now, for given experiment-design settings f and N, the estima-

tion method in Eq. (10) provides a structured approach for compar-

ing, analysing, and finally, improving the parameter-estimation

settings, a with a certain coordinate system, Eq. (11) or Eq. (12),

for temperature estimation. Providing a framework for improving

the parameter-estimation settings, thus deriving a more-accurate

estimation method, is a novel contribution of this work. These

parameter-estimation settings can be seen as a concrete example

of m in Fig. 1. In order to apply an (improved) estimation method

with certain settings in f ;N and a on a practical application, such

as a Battery Management System (BMS), Eq. (10) can be stored as

a look-up table which maps the measured input Z to an estimated

temperature T̂ , since all input arguments, except for Z, are fixed in

Eq. (10).

3.3. State-of-the-art temperature estimation methods

Currently, there are a number of studies presenting EIS-based

temperature estimation methods. In the design of the estimation

method, these studies do not clearly differentiate between experi-

ment design and parameter estimation. Table 1 shows the corre-

sponding differentiation as partly presented in [1] of the existing

estimation methods. For each method, the estimation parameters

f ;a and the coordinate system, Eq. (11) or Eq. (12), can be identi-

fied to fit Eq. (10). This allows for a comparison of methods in Sec-

tion 5 for a fixed N.

For a more detailed explanation of the different settings in p and

m for the existing temperature-estimation methods, as indicated in

Table 1, the reader is referred to [1]. In recent literature, a new

method has been presented by Spinner et al. [13], where, contra-

dicting to the methods by Schmidt et al. [7] and Richardson et al.

[10], a temperature relation is inferred from ImðZÞ at a fixed fre-

quency rather than from ReðZÞ. The estimation parameters for

the improved method, which we will propose in Section 5, will

be obtained by choosing the estimation parameters which achieve

an improved accuracy, in terms of a smaller MSE of the estimated

temperature, based on the results of the analysis also presented in

Section 5. It should be noted that a better accuracy in terms of MSE

is not necessarily equivalent to both a smaller bias and standard

deviation since the MSE is given by Eq. (5). A trade-off between

bias and standard deviation may also result in a smaller MSE.

4. Sensitivity analysis

The presented estimation method in Eq. (10) in combination

with experiment design provides a structured approach for com-

paring and analysing the accuracy of EIS-based temperature esti-

mation. Also, it provides an approach in finding improved

settings in experiment design and parameter estimation. However,

which settings should be chosen, and what is the basis for these

settings for other state-of-the-art estimation methods? More gen-

erally, which p and m are chosen in Fig. 1 and which settings could

yield more accurate results? Therefore, an analysis of battery-

impedance data may provide indications as to what these settings

should be. Also, it may give insight into the choices for certain set-

tings in other studies and their presented estimation methods.

The first condition for obtaining an accurate temperature esti-

mate is that the sensitivity of the battery impedance with respect

to temperature should be high. A second condition for an accurate

estimate is that the sensitivity with respect to other dependencies

such as SoC or w is low. These sensitivities can be clearly shown by

approximating the terms in the objective function in Eq. (10) (i.e., �g

in Eq. (11) or Eq. (12)), for a fixed frequency f and for N ¼ 1, with a

first-order Taylor approximation around the estimated battery

temperature T̂ , i.e.,

ĝðf ; T̂Þ � gðf ; T; SoC;wÞ � v

� @g

@T
ðT̂ � TÞ þ @g

@SoC

1

M

X

M

j¼1

SoCj � SoC

 !

� @g

@w
w� v; ð13Þ

Table 1

Existing temperature-estimation methods.

Method Experiment-design parameters p Parameter-estimation parameters m

Schmidt et al. [7] Fixed f ;N Cartesian, Eq. (11), a ¼ 1

Richardson et al. [10] Fixed f ;N Cartesian, Eq. (11), a ¼ 1

Spinner et al. [13] Fixed f ;N Cartesian, Eq. (11), a ¼ 0

Srinivasan [9] Fixed f ;N Polar,

Eq. (12), a ¼ 1

Raijmakers et al. [5] Varying f such that ImðZÞ ¼ 0, Cartesian, Eq. (11), a ¼ 0

fixed N

H.P.G.J. Beelen et al. / Applied Energy 175 (2016) 128–140 131



where ĝ is given by Eq. (8), in which 1
K

PK
i¼1v i � 0 for large enough K.

The sensitivity of the battery impedance with respect to tem-

perature is now given by the partial derivative of g with respect

to T. The sensitivity with respect to SoC and w is given by the

corresponding partial derivatives. Given the conditions for the sen-

sitivity, we require the partial derivative with respect to T to be

large and the other partial derivatives to be small. Therefore, set-

tings for experiment design and parameter estimation should meet

these requirements and can be found by inspecting these partial

derivatives. Note that this comparison of derivatives is a qualita-

tive comparison since SoC 2 ½0;100� and T 2 ½�20;50�, which are

two fundamentally different quantities. As before, it is assumed

that w ¼ 0.

In Fig. 2a–d, partial derivatives of g with respect to temperature

for various parameter-estimation settings (i.e., ReðZÞ; ImðZÞ; argðZÞ
and Zj j) are shown. The measurement setup for obtaining these

data will be introduced in Section 5. The horizontal axis of each

plot denotes frequency and the vertical axis denotes temperature.

The derivative is shown in a colour corresponding to the values in

the colourbar. In Fig. 2a and b, the derivatives of ReðZÞ and ImðZÞ
with respect to temperature, respectively, are shown. The deriva-

tives of argðZÞ and Zj j are depicted in Fig. 2c and d, respectively.

For Fig. 2a and b, it can be seen that the largest temperature

dependencies can be found in the low frequency range. In this fre-

quency range, the derivative in Fig. 2a significantly decreases

above 40 �C and the derivative in Fig. 2b even decreases above

30 �C. It should be noted that, although not visible in the figures

due to the maximum value of 17 lX K�1 shown in the contour

plots, the derivative in the low-frequency range for Fig. 2b is larger

than for Fig. 2a. For measurements at higher frequencies

(> 200 Hz) the derivative in Fig. 2a is generally larger than the

one in Fig. 2b. In Fig. 2d, where the derivative of the modulus of

the battery impedance, Zj j, is depicted, similar trends can be

observed. A large derivative can be seen in the low frequency range

whilst towards the higher frequencies the derivative decreases

towards zero. As can be expected, the derivative of the argument

with respect to temperature in Fig. 2c shows significantly different

behaviour compared to other derivatives. Generally, the mid-range

frequencies, 500–1000 Hz, show relatively large dependencies over

the full temperature range. In the range of 10–50 �C, lower fre-

quencies up to 500 Hz imply accurate results for a temperature

estimate. Besides the temperature dependency, the battery impe-

dance also depends on SoC. Partial derivatives of g, with

parameter-estimation settings yielding ReðZÞ and ImðZÞ (i.e.,

a ¼ 1 and a ¼ 0, respectively), with respect to SoC are shown in

Fig. 2e and f, respectively. Both plots clearly show that the varia-

tion of the battery impedance with respect to SoC is quite large

for low SoC values, especially for frequencies up to 100 Hz.

In conclusion, the partial derivatives of the sensitivity analyses

in Fig. 2 generally indicate that, for low frequencies, the complex

battery impedance has a higher sensitivity with respect to temper-

ature and simultaneously, also a higher sensitivity with respect to

SoC (especially at low SoC). The existing temperature estimation

methods and their corresponding studies as denoted in Table 1

use similar sensitivity analyses, with similar results, in order to

select settings for experiment design and parameter estimation.

The selection of settings in these studies is typically a quantitative

comparison of @Z
@T

and @Z
@SoC

. In other words, a trade-off is found in a

large @Z
@T

and a small @Z
@SoC

. However, this trade-off does not take into

account how @Z
@SoC

and @Z
@T

jointly affect the accuracy of the estimated

temperature T̂ . Subsequently, it can be stated that a selection of

settings based on the accuracy of the estimated temperature T̂ ,

instead of a selection based on a trade-off between @Z
@T

and @Z
@SoC

(which then results in a certain accuracy of T̂), is not considered

in existing literature. It can be concluded that selecting settings

based on the accuracy of the temperature estimate T̂ is not trivial.

Therefore, we propose to do a Monte-Carlo study [22], in which the

accuracy of the temperature estimate T̂ can be evaluated for a

range of frequencies f, temperatures T and SoC values, by using a
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Fig. 2. Subfigures (a)–(d) show partial derivatives at SoC ¼ 40% where (a), (b) and (d) are absolute values in [lX K�1] and (c) is an absolute value in [degree K�1]; subfigures

(e) and (f) show partial derivatives in [lX] at a temperature of T ¼ 30 �C.
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distribution of measured impedance values Z (due to measurement

noise v) in Eq. (10) and computing a distribution of temperature

estimates T̂ .

5. Results of accuracy analysis and comparison

To analyse and compare the accuracy of the temperature

estimate T̂ for existing estimation methods in literature, as well

as to synthesise a more accurate estimation method, EIS measure-

ments have been conducted for a single type of battery cell. Based

on these measurements and by using Eq. (10), Monte-Carlo simu-

lations have been conducted.

5.1. Comparison of temperature estimation methods

Given foreseeable use of impedance-based temperature estima-

tion in battery packs of (hybrid) electric vehicles, a large-capacity

(90 Ah) LiFePO4 cell has been chosen for the experiments. The EIS

measurements were conducted with a dedicated measurement

setup in combination with Maccor cycling equipment and a cli-

mate chamber. The measurement settings for the experiments

are given in Table 2, where the real battery temperature T is mea-

sured after applying a period of rest in order to reach a thermal

equilibrium. The frequency range is based on a lower bound, where

the battery impedance becomes SoC-dependent (see Fig. 2e and f).

The upper bound is chosen at a frequency where no noticeable

temperature dependency is found (see Fig. 2a–d). The temperature

range includes temperatures expected during normal operating

conditions of battery cells and also, it approximately covers the

temperature ranges used in other studies. Temperatures above

þ50 �C are not considered since the BMS will most likely limit

operation or even disconnect the battery when the upper bound

of this temperature range is reached due to risk of thermal run-

away. Still, temperatures above þ50 �C can be estimated, albeit

with limited accuracy as can be expected from the trend in

Fig. 2, where the sensitivity of the battery impedance with respect

to temperature decreases for higher temperatures.

For each combination of the measurement settings in Table 2,

K ¼ 64 measurements have been conducted for M ¼ 4 values for

SoC. The measurement time for a single impedance measurement

was fixed at 1 s, independent of the chosen measurement fre-

quency. In the event of thermal runaway, this will allow for suffi-

ciently fast detection of a rapid rise in temperature. It should be

noted that choosing a fixed measurement time provides for an ini-

tial averaging of the measurements in the frequency domain,

depending on the chosen frequency.

Results from these measurements at SoC ¼ 40% are shown in a

Nyquist plot in Fig. 3. Due to the measurement noise v, for each

measurement setting, a distribution of K ¼ 64 data points can be

seen in the Nyquist plot. The inset shows five distributions for five

temperatures at a single frequency. Analysis yields that the mea-

surement points are normally distributed with zero mean and a

standard deviation in the real and imaginary part of r ¼ 14 lX.
Using the measurement data, a model ĝ of the battery impedance

can be obtained through Eq. (8). The model comprises a lookup-

table with a temperature-frequency grid. A finer temperature-

frequency grid than the measurement grid in Table 2 is obtained

using spline interpolation.

Finding the temperature estimate requires solving Eq. (10). To

evaluate the EIS-based temperature estimation methods, Monte-

Carlo simulations are carried out over a range of f ;N;a and for

Eq. (11) and Eq. (12). The procedure for these Monte-Carlo simula-

tions is as follows. For a certain point in which the accuracy of the

temperature estimate T̂ is evaluated, i.e., at some f ; T , and SoC, an

input distribution of measured impedance values Z is generated by

adding a distribution of the measurement noise v to the modelled

impedance value ĝ in Eq. (9), as shown on the left in Fig. 4. For sim-

plicity, only the real part of the impedance, Re(Z), for the input dis-

tribution is depicted. The settings for this example are taken to be

f ¼ 100 Hz, T ¼ 20 �C, SoC = 40% and a ¼ 0:5. The sample size of

the Monte-Carlo simulations (i.e., the number of realisations for

Z) is taken NMC ¼ 104, which results in a P 95%-confidence bound

for temperature estimates being within �0:2 �C of the actual value,

Table 2

EIS-measurement settings for constructing ĝ.

Temperature T �20;�10;þ10;þ30;þ50 �C

Frequency f 25 log-spaced f : 10 Hz 6 f 6 5 kHz

SoC values 20;40;60;80%

50 ◦C

30 ◦C

10 ◦C

-10 ◦C

-20 ◦C

-I
m

(Z
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Ω
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0
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Fig. 3. Nyquist plot of EIS data (K ¼ 64) at SoC ¼ 40% at various frequencies and

temperatures given in Table 2; inset: EIS measurement data for f ¼ 2979 Hz.
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estimated battery temperatures T̂ in [�C].
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see, e.g., [23]. Eq. (10) is evaluated by inserting the distribution of Z

as shown in the centre of Fig. 4. Now, by assessing the output dis-

tribution of the Monte-Carlo simulations as shown on the right in

Fig. 4, the quality of the temperature estimate T̂ can be described in

terms of the MSE, see also, e.g., [23]. However, in order to analyse

the temperature estimation more thoroughly, we will split the MSE

into bias and standard deviation.

The Monte-Carlo simulations allow us to make an assessment of

the accuracy of the temperature estimate T̂ for any given estima-

tion parameters f ;N and a for Eq. (10). Since the existing EIS-

based temperature estimation methods [5,7,9,10,13] can all be

described by a particular choice for f ;N and a and Eq. (11) or Eq.

(12), see Table 1, the Monte-Carlo simulations allow the aforemen-

tioned methods to be compared. In our comparison and analysis,

N ¼ 1 is chosen (which leads to a total measurement time of 1

s). Certainly, N > 1 will give a smaller estimation error, but it will

also take more time to gather measurement data (depending on

the chosen measurement frequency f). In order to avoid the discus-

sion on a trade-off between a short measurement time and a small

estimation error, we take N ¼ 1 in the comparison and analysis.

Finally, due to the use of a different battery cell than the ones used

in the various studies [5,7,9,10,13], an equivalent excitation fre-

quency f is chosen, satisfying the description of the estimation

methods in Section 3.3. Note that for the method of Raijmakers

et al. [5], a frequency range is given since they use the concept of

zero-intercept frequencies, implying a different frequency for each

temperature.

5.2. Analysis of the temperature estimation methods

Figs. 5 and 6 show the results of the analysis of temperature-

estimation accuracy, using the model provided in Table 2 for Carte-

sian and polar coordinates, respectively. Both figures are divided

into two blocks of three rows and four columns with contour plots.

The horizontal axis in each plot shows the frequency on a logarith-

mic scale whereas the vertical axis shows the value for a, as in Eq.

(10). The colour corresponds to the colourbar to the right of each

plot. The first block of each figure shows the bias on the tempera-

ture estimate and the second block shows the standard deviation

on the estimate in �C. In each block, the columns show SoC values

ascending from 20% to 80% and the rows show the real tempera-

tures in ascending order from �10 �C to 30 �C. The accuracy in

terms of the MSE can be interpreted as the combination of both

blocks (i.e., bias and standard deviation) using Eq. (5). Each block

will be discussed separately below.

5.2.1. Bias in Cartesian coordinates

In general, it can be stated that for SoC values towards the edges

of the SoC spectrum (e.g. SoC 2 f20;80g%) larger differences in

bias throughout the contour plot can be seen. Also, this bias is typ-

ically larger compared to the centre of the SoC spectrum (e.g.

SoC 2 f40;60g%). Especially in the high-frequency areas, the bias

is larger. For SoC = 20%, the bias at high frequencies towards

a ¼ 0 is significantly larger than for other points in the plot such

as a ¼ 1. For SoC = 80%, and towards a ¼ 1, this effect seems to

be the opposite. In the centre of the SoC spectrum, the deviations

in bias throughout the contour plots are smaller than at the edges

of the SoC spectrum. However, towards high frequencies, a larger

bias can be seen. Moreover, with higher temperatures, this effect

is stronger. Given the fact that a model is used that has been aver-

aged over SoC (i.e., Eq. (8) in combination with Table 2), one would

expect the bias in the centre of the SoC spectrum to be around zero.

Surprisingly, the bias is slightly negative instead (i.e., a light blue

colour). A reason for this might be the asymmetry of the battery

impedance with respect to SoC (see Fig. 2e and f) in combination

with the averaging over SoC. Generally, the lowest bias can be

found in the range of 10–300 Hz depending on a. Selection of an

a value in this frequency range is less clear and will most likely

depend on the analysis of the standard deviation.

5.2.2. Standard deviation in Cartesian coordinates

The standard deviation on the temperature estimate increases

substantially for higher temperatures. For different SoC values,

no noticeable difference in the standard deviation is present. For

a ¼ 0, the standard deviation towards higher frequencies is typi-

cally larger than for a ¼ 1, as can be noticed from the bottom right

corner of each plot. Furthermore, all plots are in agreement on the

fact that the smallest standard deviation is found for a ¼ 0:5, i.e.,

by equally weighting ReðZÞ and ImðZÞ (which is not equal to using

a ¼ 0, i.e., Zj j, in Eq. (10) with Eq. (12)).

5.2.3. Bias in polar coordinates

The bias plots in polar coordinates in Fig. 6 differ noticeably

from the plots in Cartesian coordinates in Fig. 5. This is likely due

to the fact that two quantities with different units (i.e., argðZÞ in

radians and Zj j in lX) are compared. In all plots, the bias is very

large in the bottom right corner, in the high-frequency end where

a ¼ 0 (i.e., when Zj j is considered). This is in agreement with

Fig. 2d, where it can be seen that the sensitivity of Zj j with respect

to temperature is near to zero for frequencies above approximately

1 kHz. Furthermore, the contour plots seem to show an irregular

pattern. Therefore, we will focus on the cases a ¼ 0 and a ¼ 1 in

order to derive indications for settings of the estimation parame-

ters f and a which should yield a small bias. In terms of frequency

ranges, for the case a ¼ 0, frequencies up to 500 Hz yield overall a

small bias, whereas for the case a ¼ 1, defining a frequency range is

less clear. For low temperatures, e.g., 10 �C, there are no clear indi-

cations for a frequency range which yields a small bias over the

entire SoC range at that temperature. This is in agreement with

Fig. 2c, where the sensitivity at 10 �C is relatively small compared

to higher temperatures. It is debatable which case, a ¼ 0 or a ¼ 1,

performs better with respect to the resulting bias. As for the rela-

tion between bias and real battery temperatures, no decisive

observations can be made.

5.2.4. Standard deviation in polar coordinates

Also, the plots showing standard deviation differ substantially

for polar coordinates in Fig. 6, compared to Cartesian coordinates

in Fig. 5. Again, in all plots the bottom right corner shows signifi-

cantly different behaviour. Here, the standard deviation is relatively

large (which is again in agreement with Fig. 2d). Generally it can be

seen that, for both a ¼ 0 and a ¼ 1, the standard deviation is small

for low frequencies and increases towards higher frequencies. Espe-

cially for higher temperatures, the area of a large standard deviation

expands towards lower frequencies. Overall, the frequency range

10–100 Hz gives the best results here. For the case a ¼ 0 we can

state that frequencies starting from 700 Hz should be avoided.

5.3. Synthesis of an improved estimation method

Besides the use of the framework for comparison and analysis, a

novel contribution of this work is the ability to synthesise a more-

accurate or improved temperature-estimation method. To do so,

the comparison and analysis are used as a roadmap to derive a

more-accurate method. The analysis of Figs. 5 and 6 indicates that

in Cartesian coordinates, bias and standard deviation increase for

higher frequencies and higher temperatures. Overall, frequencies

up to 300 Hz are suitable. When a relatively small bias is permitted

in order to obtain the smallest standard deviation, the lowest

frequency used for these experiments, 10 Hz, should be chosen.
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(x) SoC = 80%, T = 30◦C

Fig. 5. Simulation results with (a)–(l) being the bias and (m)–(x) being the standard deviation (i.e., Eq. (4)) of the temperature estimate T̂ , respectively. All results are in [�C],

given an averaged model over SoC (i.e., Eq. (8)) and in Cartesian coordinates (i.e., Eq. (11)).
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α
[-
]

f [Hz]

101 102 103
0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

(w) SoC = 60%, T = 30◦C
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Fig. 6. Simulation results with (a)–(l) being the bias and (m)–(x) being the standard deviation (i.e., Eq. (4)) of the temperature estimate T̂ , respectively. All results are in [�C],
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However, the sensitivity analyses in Fig. 2 show that a slightly

higher frequency of 50 Hz is preferable since the sensitivity of

ReðZÞ and ImðZÞ with respect to temperature is larger and the sen-

sitivity of ReðZÞ and ImðZÞ with respect to SoC is smaller. The

choice for parameter a is less clear given the analysis for bias,

but based on the analysis of standard deviation, we find a ¼ 0:5.

This is likely due to the fact that for a ¼ 0:5, two measurements,

ReðZÞ and ImðZÞ, are combined. Indications for values of f and a
found in the analysis for polar coordinates are less clear. There, a

parameter setting which should be avoided is a ¼ 0 in combination

with frequencies higher than 300 Hz.

Given the results of the analysis, a new method is proposed,

based on Cartesian coordinates. If we accept a small bias in

exchange for a small standard deviation we find, for this type

of battery cell, estimation parameters f ¼ 50 Hz and a ¼ 0:5.

Note that all conclusions drawn here are specific for the cell

under consideration. Still, the proposed methodology and analy-

sis is general and can be extended towards, and repeated for,

different battery cells. More precisely, a small-capacity Li-ion

cell (LiCoO2, 300 mAh) has also been analysed. Compared to

the large-capacity cell under consideration in Fig. 2, similar

trends have been observed for the results of the sensitivity anal-

yses. However, given the difference in cell type, it should be

noted that, although similar trends were observed, frequency

and impedance values corresponding to these trends can be

different.
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Fig. 7. Results of the comparison of estimation methods for case SoC unknown.
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Table 3

Comparison of estimation methods for unknown SoC (case A) and known SoC (case B).

Avg. abs. bias ½�C� MSE ½�C2� Average r ½�C�

Method Equivalent f (Hz) Case A Case B Case A Case B Case A & Case B

Schmidt et al. [7] 1300 0.6 0.2 12.1 11.8 3.4

Richardson et al. [10] 150 0.6 0.0 3.8 3.5 1.9

Spinner et al. [13] 150 0.4 0.0 3.8 3.6 1.9

Srinivasan [9] 150 1.0 0.3 12.2 11.5 3.4

Raijmakers et al. [5] 200–650 0.9 0.1 11.0 10.2 3.2

Improved method 50 0.4 0.0 0.7 0.5 0.7
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Fig. 8. Results of the comparison of estimation methods for case SoC known.
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5.4. Results of the comparison

The results of the comparison of estimation methods, as defined

in Table 1, are depicted in Fig. 7. In this figure, the plots show a com-

parison of bias values, standard-deviation values and MSE values in

the top, middle and bottom plots, respectively. The left and right

column show these results for SoC = 40% and SoC = 80%, respec-

tively. In order to make a comparison, the estimation methods are

evaluated at temperatures T 2 f�15;�10; . . . ;þ35;þ40g �C. Since

the battery cell under investigation is not the same as the one used

in [4,5,7–14], an equivalent frequency, complying with the descrip-

tion of the methods in Section 3.3, is chosen in the frequency spec-

trum of the LiFePO4 cell. Also, the proposed improved method has

been evaluated. For Fig. 7, the selected excitation frequencies can

be found in Table 3. Furthermore, the results of the comparison

are also shown in Table 3, Case A, in terms of the average absolute

bias, the average standard deviation and the MSE, calculated over

the same frequencies and temperatures as in Fig. 7 and

SoC 2 f20;40;60;80g%.

Based on these results, the improved method and the methods

in [10,13] show the most accurate results in terms of overall bias

and standard deviation for SoC 2 f20;40;60;80g%, as well as in

terms of the MSE in Fig. 7e and f. It should be noted that some

methods yield better performance at high temperatures whilst

other methods perform better at low temperatures. Therefore,

the bias and average standard deviation do not give full

details, but overall, the improved method outperforms the other

methods.

6. Extensions

Besides the case presented in this paper, where the battery SoC

is assumed to be unknown, the presented approach can be

extended to situations where, for example, information on SoC

and battery ageing [24,25] is incorporated. Also, the approach

can be extended towards incorporating (dis)charge currents, such

as drive currents in (hybrid) electric vehicles. These extensions

can be interpreted as the effects w in the battery model in Eq. (7)

and aim at improving the temperature estimate. An additional

extension is to further investigate the effect of a non-uniform

temperature distribution (i.e., a temperature gradient across the

battery cell) on impedance-based temperature estimation, since

the effect of temperature gradients on battery behaviour has been

shown to be important in other studies, see, e.g., [26]. We will now

present one particular extension, which is the incorporation of SoC

in the temperature estimation. In this case, the model in Eq. (9) is

used instead of Eq. (8) to do the temperature estimation in Eq. (10).

Now, the SoC becomes an argument for the model in Eq. (9), com-

prising of a lookup-table for each SoC value in Table 2.

In Fig. 8 and Table 3, Case B, the results for the case where the

SoC is known are shown in a similar way as for the case where the

SoC is unknown in Fig. 7 and Table 3, Case A. The plots for standard

deviation in Fig. 8c and d indicate that the standard deviation is not

different from the case where the SoC is unknown. Table 3 con-

firms this. As to be expected, results for the bias are noticeably dif-

ferent compared to the case where the SoC is unknown. Now, the

bias on the estimate is (very close to) zero as can be seen in

Fig. 8a and b and Table 3, Case B. The overall accuracy in terms

of the MSE in Fig. 8e and f, and Table 3, Case B, has slightly

improved due to the improvement of the bias. Also, the improved

method yields the best results in terms of MSE, however, the meth-

ods in [10,13] perform equally well in terms of bias. It can be

argued that due to certain choices in experiment design, some esti-

mation methods yield poorer performance than others for the case

where the SoC is known.

A more qualitative interpretation of comparing the accuracy of

the estimated battery temperature in the case where the SoC is

known with the case where the SoC is unknown can also be given.

In case of an unknown SoC, a typical approach is to use a battery

model which has been averaged over a number of SoC or to use a

model for a certain SoC value. Assuming that such a model will

achieve the highest model accuracy around the centre of the SoC

spectrum, i.e., SoC = 50%, temperature estimation in terms of bias

on the estimate will most likely also be accurate around the centre

of the spectrum. Moving away from the centre, towards the edges

of the SoC spectrum, the battery model will become less accurate

and the accuracy of the temperature estimate will also decrease

accordingly. This is also supported by the quantitative findings in

Figs. 5 and 6. For the case of a known SoC, the battery model will

be equally accurate over the entire SoC range and therefore, the

temperature estimate in terms of bias will be equally accurate over

the entire SoC range.

7. Conclusions

For safety and control purposes, battery-temperature informa-

tion is essential. Temperature estimation methods based on EIS

can be broken down into two steps: choosing the excitation fre-

quency f (i.e., experiment design) and estimating the temperature

T based on the measured impedance Z (i.e., parameter estimation).

This paper presents a novel, data-based approach in which exper-

iment design and parameter estimation are combined in order to

find the most accurate temperature estimate. Through the combi-

nation of these components, an improved and more accurate esti-

mation method has been deduced. The estimation parameters

within the approach can also be used to describe existing estima-

tion methods. Given the fact that no prior knowledge of batteries

or battery modelling is assumed, the framework is a promising tool

for analysis of impedance-based temperature estimation.

Using experimental data from a Li-ion cell, the sensitivity of the

battery impedance with respect to temperature and SoC is investi-

gated and the accuracy of temperature estimates is analysed with a

Monte-Carlo method for a large set of frequencies and tempera-

tures. Results are evaluated in terms of bias, standard deviation

and the MSE of the estimate T̂. These results show that suitable

estimation parameters can be found at low frequencies, using both

the real and the imaginary part of the impedance. Also, a quantita-

tive comparison of estimation methods, including the improved

method, is performed. Overall, differences in choices of estimation

parameters are found to result in significant differences between

estimation methods. It has been verified that the improved method

yields the best overall performance in terms of bias and standard

deviation.
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