000810849 001__ 810849
000810849 005__ 20240711101547.0
000810849 0247_ $$2doi$$a10.1016/j.ijhydene.2016.11.151
000810849 0247_ $$2ISSN$$a0360-3199
000810849 0247_ $$2ISSN$$a1879-3487
000810849 0247_ $$2WOS$$aWOS:000395842000042
000810849 037__ $$aFZJ-2016-03432
000810849 041__ $$aEnglish
000810849 082__ $$a660
000810849 1001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b0$$eCorresponding author
000810849 245__ $$aParameter extraction and uncertainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation
000810849 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000810849 3367_ $$2DRIVER$$aarticle
000810849 3367_ $$2DataCite$$aOutput Types/Journal article
000810849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581580196_3774
000810849 3367_ $$2BibTeX$$aARTICLE
000810849 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810849 3367_ $$00$$2EndNote$$aJournal Article
000810849 520__ $$aRecently, there has been rapid development in the field of proton exchange membrane fuel cell (PEMFC) systems for transportation applications. The performance of a PEMFC system is very sensitive to the operating conditions, and uncontrolled working conditions may cause malfunctions and degradation. A robust control strategy is urgently needed, in order to improve the reliability of PEMFCs and prolong their working lifetime. To develop such a control strategy, one needs to not only model the system with identified parameters, but also know their uncertainties. In most studies related to system uncertainties, however, the parameter uncertainty is usually regarded as a pre-known condition. This paper proposes a method to identify key parameters and their boundaries of PEMFCs, and analyze the uncertainties of internal states based on Monte Carlo simulation. A nonlinear isothermal dynamic model, which takes into account the filling-and-emptying dynamic sub-models and a sub-model of mass transport through the membrane, is firstly introduced. Key parameters are then extracted stepwise using a nonlinear least squares (NLS) algorithm, and the parameter boundaries are identified based on Monte Carlo simulations. The uncertainties of internal states in time and frequency domains are investigated afterwards. The results demonstrate the effectiveness of this method. Among the three sub-systems (cathode, anode, and membrane), the cathode sub-system was found to have the smallest uncertainties, while the membrane has the largest. Transfer functions for small disturbances of cell current to the internal states also have uncertainties, which can be low-frequency pass or bandpass functions depending on the parameter values. Further study will focus on the design of robust control strategies based on system models with uncertainties.
000810849 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000810849 588__ $$aDataset connected to CrossRef
000810849 7001_ $$0P:(DE-HGF)0$$aFang, Chuan$$b1
000810849 7001_ $$0P:(DE-HGF)0$$aHu, Junming$$b2
000810849 7001_ $$0P:(DE-HGF)0$$aCheng, Siliang$$b3
000810849 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b4
000810849 7001_ $$0P:(DE-HGF)0$$aQuyang, Minggao$$b5
000810849 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000810849 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2016.11.151$$gVol. 42, no. 4, p. 2309 - 2326$$n4$$p2309 - 2326$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000810849 8564_ $$uhttps://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.pdf$$yRestricted
000810849 8564_ $$uhttps://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.gif?subformat=icon$$xicon$$yRestricted
000810849 8564_ $$uhttps://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810849 8564_ $$uhttps://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810849 8564_ $$uhttps://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810849 8564_ $$uhttps://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810849 909CO $$ooai:juser.fz-juelich.de:810849$$pVDB
000810849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b0$$kFZJ
000810849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000810849 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000810849 9141_ $$y2017
000810849 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2014
000810849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810849 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810849 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810849 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810849 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810849 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810849 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810849 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810849 920__ $$lyes
000810849 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000810849 980__ $$ajournal
000810849 980__ $$aVDB
000810849 980__ $$aI:(DE-Juel1)IEK-3-20101013
000810849 980__ $$aUNRESTRICTED
000810849 981__ $$aI:(DE-Juel1)ICE-2-20101013