001     810849
005     20240711101547.0
024 7 _ |a 10.1016/j.ijhydene.2016.11.151
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000395842000042
|2 WOS
037 _ _ |a FZJ-2016-03432
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 0
|e Corresponding author
245 _ _ |a Parameter extraction and uncertainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581580196_3774
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recently, there has been rapid development in the field of proton exchange membrane fuel cell (PEMFC) systems for transportation applications. The performance of a PEMFC system is very sensitive to the operating conditions, and uncontrolled working conditions may cause malfunctions and degradation. A robust control strategy is urgently needed, in order to improve the reliability of PEMFCs and prolong their working lifetime. To develop such a control strategy, one needs to not only model the system with identified parameters, but also know their uncertainties. In most studies related to system uncertainties, however, the parameter uncertainty is usually regarded as a pre-known condition. This paper proposes a method to identify key parameters and their boundaries of PEMFCs, and analyze the uncertainties of internal states based on Monte Carlo simulation. A nonlinear isothermal dynamic model, which takes into account the filling-and-emptying dynamic sub-models and a sub-model of mass transport through the membrane, is firstly introduced. Key parameters are then extracted stepwise using a nonlinear least squares (NLS) algorithm, and the parameter boundaries are identified based on Monte Carlo simulations. The uncertainties of internal states in time and frequency domains are investigated afterwards. The results demonstrate the effectiveness of this method. Among the three sub-systems (cathode, anode, and membrane), the cathode sub-system was found to have the smallest uncertainties, while the membrane has the largest. Transfer functions for small disturbances of cell current to the internal states also have uncertainties, which can be low-frequency pass or bandpass functions depending on the parameter values. Further study will focus on the design of robust control strategies based on system models with uncertainties.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fang, Chuan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hu, Junming
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cheng, Siliang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Quyang, Minggao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 6
773 _ _ |a 10.1016/j.ijhydene.2016.11.151
|g Vol. 42, no. 4, p. 2309 - 2326
|0 PERI:(DE-600)1484487-4
|n 4
|p 2309 - 2326
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810849/files/1-s2.0-S0360319916334401-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:810849
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168338
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21