000810888 001__ 810888
000810888 005__ 20240709082228.0
000810888 0247_ $$2doi$$a10.1002/celc.201600125
000810888 0247_ $$2WOS$$aWOS:000380043500016
000810888 0247_ $$2altmetric$$aaltmetric:8767974
000810888 037__ $$aFZJ-2016-03462
000810888 041__ $$aEnglish
000810888 082__ $$a540
000810888 1001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b0
000810888 245__ $$aLiTi$_{2}$(PO$_{4}$)$_{3}$/C Anode Material with a Spindle-Like Morphology for Batteries with High Rate Capability and Improved Cycle Life
000810888 260__ $$aWeinheim$$bWiley-VCH$$c2016
000810888 3367_ $$2DRIVER$$aarticle
000810888 3367_ $$2DataCite$$aOutput Types/Journal article
000810888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1468929421_23342
000810888 3367_ $$2BibTeX$$aARTICLE
000810888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810888 3367_ $$00$$2EndNote$$aJournal Article
000810888 520__ $$aNanocrystalline LiTi2(PO4)3/C has been synthesized by employing a solvothermal process in which oxalic acid was used as a solubilizer for the titanium source, a surfactant, and a carbon source. Additionally, Pechini's sol–gel-based method was also used as the synthesis method for comparison. LiTi2(PO4)3/C prepared by using a solvothermal route showed a homogenous particle size with spindle-like microstructures formed from self-assembled nanosized-platelets, whereas preparation by the sol–gel process resulted in agglomerated powders with irregular morphology and particle size. The different morphologies of LiTi2(PO4)3/C prepared in the two synthesis methods tend to form different electrode layer structures, which results in remarkable differences in their electrochemical properties. In particular, the solvothermally synthesized LiTi2(PO4)3/C composite exhibits superior high-rate-discharge capability and cycling stability. A capacity of approximately 97.7 % of the initial capacity was maintained for the solvothermal sample after 500 cycles at 5 C.
000810888 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000810888 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000810888 588__ $$aDataset connected to CrossRef
000810888 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b1$$eCorresponding author
000810888 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b2
000810888 7001_ $$0P:(DE-Juel1)161361$$aAslanbas, Özgür$$b3
000810888 7001_ $$0P:(DE-Juel1)130445$$aMertens, Josef$$b4
000810888 7001_ $$0P:(DE-Juel1)169135$$aGao, Xin$$b5
000810888 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b6
000810888 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b7
000810888 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8
000810888 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.201600125$$n7$$p1157-1169$$tChemElectroChem$$v3$$x2196-0216$$y2016
000810888 909CO $$ooai:juser.fz-juelich.de:810888$$pVDB
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b0$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b1$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b2$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161361$$aForschungszentrum Jülich$$b3$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130445$$aForschungszentrum Jülich$$b4$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169135$$aForschungszentrum Jülich$$b5$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b6$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b7$$kFZJ
000810888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
000810888 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000810888 9141_ $$y2016
000810888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2014
000810888 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810888 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810888 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810888 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810888 920__ $$lyes
000810888 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000810888 980__ $$ajournal
000810888 980__ $$aVDB
000810888 980__ $$aUNRESTRICTED
000810888 980__ $$aI:(DE-Juel1)IEK-9-20110218
000810888 981__ $$aI:(DE-Juel1)IET-1-20110218