000810911 001__ 810911
000810911 005__ 20240712112842.0
000810911 0247_ $$2doi$$a10.1109/TIE.2016.2516961
000810911 0247_ $$2ISSN$$a0018-9421
000810911 0247_ $$2ISSN$$a0099-4553
000810911 0247_ $$2ISSN$$a0278-0046
000810911 0247_ $$2ISSN$$a1557-9948
000810911 0247_ $$2WOS$$aWOS:000374164600050
000810911 0247_ $$2altmetric$$aaltmetric:21829711
000810911 037__ $$aFZJ-2016-03485
000810911 041__ $$aEnglish
000810911 082__ $$a000
000810911 1001_ $$0P:(DE-HGF)0$$aRaijmakers, Luc H. J.$$b0
000810911 245__ $$aNon-Zero Intercept Frequency: An Accurate Method to Determine the Integral Temperature of Li-Ion Batteries
000810911 260__ $$aNew York, NY$$bIEEE$$c2016
000810911 3367_ $$2DRIVER$$aarticle
000810911 3367_ $$2DataCite$$aOutput Types/Journal article
000810911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467113928_5435
000810911 3367_ $$2BibTeX$$aARTICLE
000810911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810911 3367_ $$00$$2EndNote$$aJournal Article
000810911 520__ $$aA new impedance-based approach is introduced in which the integral battery temperature is related to other frequencies than the recently developed zero-intercept frequency (ZIF). The advantage of the proposed non-ZIF (NZIF) method is that measurement interferences, resulting from the current flowing through the battery (pack), can be avoided at these frequencies. This gives higher signal-to-noise ratios (SNRs) and, consequently, more accurate temperature measurements. A theoretical analysis, using an equivalent circuit model of a Li-ion battery, shows that NZIFs are temperature dependent in a way similar to the ZIF and can therefore also be used as a battery temperature indicator. To validate the proposed method, impedance measurements have been performed with individual LiFePO4 batteries and with large LiFePO4 battery packs tested in a full electric vehicle under driving conditions. The measurement results show that the NZIF is clearly dependent on the integral battery temperature and reveals a similar behavior to that of the ZIF method. This makes it possible to optimally adjust the NZIF method to frequencies with the highest SNR.
000810911 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000810911 588__ $$aDataset connected to CrossRef
000810911 7001_ $$0P:(DE-HGF)0$$aDanilov, Dmitri L.$$b1
000810911 7001_ $$0P:(DE-HGF)0$$aLammeren, Joop P. M. van$$b2
000810911 7001_ $$0P:(DE-HGF)0$$aLammers, Thieu J. G.$$b3
000810911 7001_ $$0P:(DE-HGF)0$$aBergveld, Henk Jan$$b4
000810911 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b5$$eCorresponding author$$ufzj
000810911 773__ $$0PERI:(DE-600)2027527-4$$a10.1109/TIE.2016.2516961$$gVol. 63, no. 5, p. 3168 - 3178$$n5$$p3168 - 3178$$tIEEE transactions on industrial electronics$$v63$$x1557-9948$$y2016
000810911 8564_ $$uhttps://juser.fz-juelich.de/record/810911/files/07378973.pdf$$yRestricted
000810911 8564_ $$uhttps://juser.fz-juelich.de/record/810911/files/07378973.gif?subformat=icon$$xicon$$yRestricted
000810911 8564_ $$uhttps://juser.fz-juelich.de/record/810911/files/07378973.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810911 8564_ $$uhttps://juser.fz-juelich.de/record/810911/files/07378973.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810911 8564_ $$uhttps://juser.fz-juelich.de/record/810911/files/07378973.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810911 8564_ $$uhttps://juser.fz-juelich.de/record/810911/files/07378973.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810911 909CO $$ooai:juser.fz-juelich.de:810911$$pVDB
000810911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b5$$kFZJ
000810911 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000810911 9141_ $$y2016
000810911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810911 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T IND ELECTRON : 2014
000810911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810911 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810911 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810911 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T IND ELECTRON : 2014
000810911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810911 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810911 920__ $$lyes
000810911 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000810911 980__ $$ajournal
000810911 980__ $$aVDB
000810911 980__ $$aUNRESTRICTED
000810911 980__ $$aI:(DE-Juel1)IEK-9-20110218
000810911 981__ $$aI:(DE-Juel1)IET-1-20110218