000810932 001__ 810932
000810932 005__ 20210129223633.0
000810932 0247_ $$2doi$$a10.1038/srep28359
000810932 0247_ $$2Handle$$a2128/11687
000810932 0247_ $$2WOS$$aWOS:000378197600001
000810932 0247_ $$2altmetric$$aaltmetric:9537607
000810932 0247_ $$2pmid$$apmid:27323929
000810932 037__ $$aFZJ-2016-03498
000810932 082__ $$a000
000810932 1001_ $$0P:(DE-HGF)0$$aSharma, Kanika$$b0
000810932 245__ $$aElimination of a ligand gating site generates a supersensitive olfactory receptor
000810932 260__ $$aLondon$$bNature Publishing Group$$c2016
000810932 3367_ $$2DRIVER$$aarticle
000810932 3367_ $$2DataCite$$aOutput Types/Journal article
000810932 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467202001_3585
000810932 3367_ $$2BibTeX$$aARTICLE
000810932 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810932 3367_ $$00$$2EndNote$$aJournal Article
000810932 520__ $$aOlfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.
000810932 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000810932 588__ $$aDataset connected to CrossRef
000810932 7001_ $$0P:(DE-HGF)0$$aAhuja, Gaurav$$b1
000810932 7001_ $$0P:(DE-HGF)0$$aHussain, Ashiq$$b2
000810932 7001_ $$0P:(DE-Juel1)131909$$aBalfanz, Sabine$$b3$$ufzj
000810932 7001_ $$0P:(DE-Juel1)131911$$aBaumann, A.$$b4$$ufzj
000810932 7001_ $$0P:(DE-HGF)0$$aKorsching, Sigrun I.$$b5$$eCorresponding author
000810932 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep28359$$gVol. 6, p. 28359 -$$p28359 $$tScientific reports$$v6$$x2045-2322$$y2016
000810932 8564_ $$uhttps://juser.fz-juelich.de/record/810932/files/srep28359.pdf$$yOpenAccess
000810932 8564_ $$uhttps://juser.fz-juelich.de/record/810932/files/srep28359.gif?subformat=icon$$xicon$$yOpenAccess
000810932 8564_ $$uhttps://juser.fz-juelich.de/record/810932/files/srep28359.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810932 8564_ $$uhttps://juser.fz-juelich.de/record/810932/files/srep28359.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810932 8564_ $$uhttps://juser.fz-juelich.de/record/810932/files/srep28359.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810932 8564_ $$uhttps://juser.fz-juelich.de/record/810932/files/srep28359.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810932 909CO $$ooai:juser.fz-juelich.de:810932$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000810932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131909$$aForschungszentrum Jülich$$b3$$kFZJ
000810932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131911$$aForschungszentrum Jülich$$b4$$kFZJ
000810932 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000810932 9141_ $$y2016
000810932 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810932 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000810932 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000810932 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000810932 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2014
000810932 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000810932 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810932 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810932 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810932 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2014
000810932 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810932 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810932 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810932 920__ $$lyes
000810932 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000810932 9801_ $$aFullTexts
000810932 980__ $$ajournal
000810932 980__ $$aVDB
000810932 980__ $$aUNRESTRICTED
000810932 980__ $$aI:(DE-Juel1)ICS-4-20110106
000810932 981__ $$aI:(DE-Juel1)IBI-1-20200312