000810933 001__ 810933
000810933 005__ 20210129223634.0
000810933 0247_ $$2doi$$a10.1007/BF02247945
000810933 0247_ $$2ISSN$$a0010-485X
000810933 0247_ $$2ISSN$$a1436-5057
000810933 0247_ $$2WOS$$aWOS:A1988N591100007
000810933 037__ $$aFZJ-2016-03499
000810933 082__ $$a004
000810933 1001_ $$0P:(DE-HGF)0$$aWeidner, P.$$b0$$eCorresponding author
000810933 245__ $$aThe Durand-Kerner method for trigonometric and exponential polynomials - Das Durand-Kerner-Verfahren für trigonometrische und exponentielle Polynome
000810933 260__ $$aWien [u.a.]$$bSpringer$$c1988
000810933 3367_ $$2DRIVER$$aarticle
000810933 3367_ $$2DataCite$$aOutput Types/Journal article
000810933 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467263808_21170
000810933 3367_ $$2BibTeX$$aARTICLE
000810933 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810933 3367_ $$00$$2EndNote$$aJournal Article
000810933 520__ $$aThe problem of finding all roots of an exponential or trigonometric equation is reduced to the determination of zeros of algebraic polynomials where the well-known Durand-Kerner algorithm can be applied. This transformation of the problem has the additional advantage that the periodicity of the original functions is eliminated and the choice of starting values is simplified.
000810933 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000810933 588__ $$aDataset connected to CrossRef
000810933 773__ $$0PERI:(DE-600)1458946-1$$a10.1007/BF02247945$$gVol. 40, no. 2, p. 175 - 179$$n2$$p175 - 179$$tComputing$$v40$$x1436-5057$$y1988
000810933 8564_ $$uhttps://juser.fz-juelich.de/record/810933/files/art_10.1007_BF02247945.pdf$$yRestricted
000810933 8564_ $$uhttps://juser.fz-juelich.de/record/810933/files/art_10.1007_BF02247945.gif?subformat=icon$$xicon$$yRestricted
000810933 8564_ $$uhttps://juser.fz-juelich.de/record/810933/files/art_10.1007_BF02247945.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810933 8564_ $$uhttps://juser.fz-juelich.de/record/810933/files/art_10.1007_BF02247945.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810933 8564_ $$uhttps://juser.fz-juelich.de/record/810933/files/art_10.1007_BF02247945.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810933 8564_ $$uhttps://juser.fz-juelich.de/record/810933/files/art_10.1007_BF02247945.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810933 909CO $$ooai:juser.fz-juelich.de:810933$$pVDB
000810933 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000810933 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000810933 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810933 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUTING : 2014
000810933 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810933 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810933 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810933 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810933 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810933 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810933 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000810933 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000810933 980__ $$ajournal
000810933 980__ $$aVDB
000810933 980__ $$aI:(DE-Juel1)VDB62
000810933 980__ $$aI:(DE-Juel1)JSC-20090406
000810933 980__ $$aUNRESTRICTED
000810933 981__ $$aI:(DE-Juel1)JSC-20090406