000810957 001__ 810957
000810957 005__ 20210129223638.0
000810957 0247_ $$2doi$$a10.1177/0023677215610708
000810957 0247_ $$2ISSN$$a0023-6772
000810957 0247_ $$2ISSN$$a1758-1117
000810957 0247_ $$2WOS$$aWOS:000376294600006
000810957 037__ $$aFZJ-2016-03513
000810957 082__ $$a610
000810957 1001_ $$0P:(DE-HGF)0$$aPikhovych, A.$$b0
000810957 245__ $$aTranscranial direct current stimulation in the male mouse to promote recovery after stroke
000810957 260__ $$aLondon$$bSage$$c2016
000810957 3367_ $$2DRIVER$$aarticle
000810957 3367_ $$2DataCite$$aOutput Types/Journal article
000810957 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467286496_21173
000810957 3367_ $$2BibTeX$$aARTICLE
000810957 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810957 3367_ $$00$$2EndNote$$aJournal Article
000810957 520__ $$aTranscranial direct current stimulation (tDCS) constitutes a promising approach for promoting recovery of function after stroke, although the underlying neurobiological mechanisms are unclear. To conduct translational research in animal models, stimulation parameters should not lead to neuronal lesions. Liebetanz et al. recommend charge densities for cathodal stimulation in rats, but parameters for mice are not established. We established tDCS in the wild-type mouse, enabling studies with genetically-engineered mice (GEM). tDCS equipment was adapted to fit the mouse skull. Using different polarities and charge densities, tDCS was safe to apply in the mouse where the charge density was below 198 kC/m2 for single or repeated stimulations. These findings are crucial for future investigations of the neurobiological mechanisms underlying tDCS using GEM.
000810957 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000810957 588__ $$aDataset connected to CrossRef
000810957 7001_ $$0P:(DE-HGF)0$$aWalter, H. L.$$b1
000810957 7001_ $$0P:(DE-HGF)0$$aMahabir, E.$$b2
000810957 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b3
000810957 7001_ $$0P:(DE-HGF)0$$aGraf, R.$$b4
000810957 7001_ $$0P:(DE-HGF)0$$aSchroeter, M.$$b5
000810957 7001_ $$0P:(DE-HGF)0$$aRueger, M. A.$$b6$$eCorresponding author
000810957 773__ $$0PERI:(DE-600)2036511-1$$a10.1177/0023677215610708$$gVol. 50, no. 3, p. 212 - 216$$n3$$p212 - 216$$tLaboratory animals$$v50$$x1758-1117$$y2016
000810957 909CO $$ooai:juser.fz-juelich.de:810957$$pVDB
000810957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b3$$kFZJ
000810957 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000810957 9141_ $$y2016
000810957 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810957 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810957 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLAB ANIM-UK : 2013
000810957 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810957 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810957 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810957 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810957 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810957 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000810957 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000810957 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000810957 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810957 920__ $$lyes
000810957 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000810957 980__ $$ajournal
000810957 980__ $$aVDB
000810957 980__ $$aI:(DE-Juel1)INM-3-20090406
000810957 980__ $$aUNRESTRICTED