000810967 001__ 810967
000810967 005__ 20240712101057.0
000810967 0247_ $$2doi$$a10.1002/2016GL068390
000810967 0247_ $$2ISSN$$a0094-8276
000810967 0247_ $$2ISSN$$a1944-8007
000810967 0247_ $$2WOS$$aWOS:000379851800037
000810967 0247_ $$2Handle$$a2128/16071
000810967 0247_ $$2altmetric$$aaltmetric:7490971
000810967 037__ $$aFZJ-2016-03522
000810967 082__ $$a550
000810967 1001_ $$0P:(DE-HGF)0$$aKracher, Daniela$$b0$$eCorresponding author
000810967 245__ $$aClimate change reduces warming potential of nitrous oxide by an enhanced Brewer-Dobson circulation
000810967 260__ $$aHoboken, NJ$$bWiley$$c2016
000810967 3367_ $$2DRIVER$$aarticle
000810967 3367_ $$2DataCite$$aOutput Types/Journal article
000810967 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512377883_12599
000810967 3367_ $$2BibTeX$$aARTICLE
000810967 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810967 3367_ $$00$$2EndNote$$aJournal Article
000810967 520__ $$aThe Brewer-Dobson circulation (BDC), which is an important driver of the stratosphere-troposphere exchange, is expected to accelerate with climate change. One particular consequence of this acceleration is the enhanced transport of nitrous oxide (N2O) from its sources at the Earth's surface toward its main sink region in the stratosphere, thus inducing a reduction in its lifetime. N2O is a potent greenhouse gas and the most relevant currently emitted ozone-depleting substance. Here we examine the implications of a reduced N2O lifetime in the context of climate change. We find a decrease in its global warming potential (GWP) and, due to a decline in the atmospheric N2O burden, also a reduction in its total radiative forcing. From the idealized transient global warming simulation we can identify linear regressions for N2O sink, lifetime, and GWP with temperature rise. Our findings are thus not restricted to a particular scenario.
000810967 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000810967 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000810967 588__ $$aDataset connected to CrossRef
000810967 7001_ $$0P:(DE-HGF)0$$aReick, Christian H.$$b1
000810967 7001_ $$0P:(DE-HGF)0$$aManzini, Elisa$$b2
000810967 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b3$$ufzj
000810967 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b4$$ufzj
000810967 773__ $$0PERI:(DE-600)2021599-X$$a10.1002/2016GL068390$$gVol. 43, no. 11, p. 5851 - 5859$$n11$$p5851 - 5859$$tGeophysical research letters$$v43$$x0094-8276$$y2016
000810967 8564_ $$uhttps://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.pdf$$yOpenAccess
000810967 8564_ $$uhttps://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.gif?subformat=icon$$xicon$$yOpenAccess
000810967 8564_ $$uhttps://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810967 8564_ $$uhttps://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810967 8564_ $$uhttps://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810967 8564_ $$uhttps://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810967 909CO $$ooai:juser.fz-juelich.de:810967$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000810967 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810967 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2014
000810967 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810967 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810967 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810967 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810967 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810967 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810967 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810967 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810967 9141_ $$y2016
000810967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b3$$kFZJ
000810967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich$$b4$$kFZJ
000810967 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000810967 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000810967 920__ $$lyes
000810967 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000810967 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000810967 9801_ $$aFullTexts
000810967 980__ $$ajournal
000810967 980__ $$aVDB
000810967 980__ $$aUNRESTRICTED
000810967 980__ $$aI:(DE-Juel1)IEK-8-20101013
000810967 980__ $$aI:(DE-Juel1)JSC-20090406
000810967 981__ $$aI:(DE-Juel1)ICE-3-20101013
000810967 981__ $$aI:(DE-Juel1)JSC-20090406